Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 14011 by Ruth1 last updated on 26/May/17

simplify:  ((4 − j5)/(1 + j2))

$$\mathrm{simplify}:\:\:\frac{\mathrm{4}\:−\:\mathrm{j5}}{\mathrm{1}\:+\:\mathrm{j2}} \\ $$

Commented by tawa tawa last updated on 26/May/17

Multiply by the conjugate both numerator and denominator  (((4 − j5))/((1 + j2))) × (((1 − j2))/((1 − j2)))  = ((4 − j8 − j5 + 10j^2 )/(1^2  − 4j^2 ))  = ((4 − j8 − j5 + 10(−1))/(1^2  − 4(−1)))                     [j^2  = − 1]  = ((4 − j8 − j5 − 10)/(1 + 4))             = ((− 6 − j13)/5)             = ((−6)/5) − j((13)/5)  = − 1.2 − j2.6

$$\mathrm{Multiply}\:\mathrm{by}\:\mathrm{the}\:\mathrm{conjugate}\:\mathrm{both}\:\mathrm{numerator}\:\mathrm{and}\:\mathrm{denominator} \\ $$$$\frac{\left(\mathrm{4}\:−\:\mathrm{j5}\right)}{\left(\mathrm{1}\:+\:\mathrm{j2}\right)}\:×\:\frac{\left(\mathrm{1}\:−\:\mathrm{j2}\right)}{\left(\mathrm{1}\:−\:\mathrm{j2}\right)} \\ $$$$=\:\frac{\mathrm{4}\:−\:\mathrm{j8}\:−\:\mathrm{j5}\:+\:\mathrm{10j}^{\mathrm{2}} }{\mathrm{1}^{\mathrm{2}} \:−\:\mathrm{4j}^{\mathrm{2}} } \\ $$$$=\:\frac{\mathrm{4}\:−\:\mathrm{j8}\:−\:\mathrm{j5}\:+\:\mathrm{10}\left(−\mathrm{1}\right)}{\mathrm{1}^{\mathrm{2}} \:−\:\mathrm{4}\left(−\mathrm{1}\right)}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\mathrm{j}^{\mathrm{2}} \:=\:−\:\mathrm{1}\right] \\ $$$$=\:\frac{\mathrm{4}\:−\:\mathrm{j8}\:−\:\mathrm{j5}\:−\:\mathrm{10}}{\mathrm{1}\:+\:\mathrm{4}}\:\:\:\:\:\:\:\:\:\:\: \\ $$$$=\:\frac{−\:\mathrm{6}\:−\:\mathrm{j13}}{\mathrm{5}}\:\:\:\:\:\:\:\:\:\:\: \\ $$$$=\:\frac{−\mathrm{6}}{\mathrm{5}}\:−\:\mathrm{j}\frac{\mathrm{13}}{\mathrm{5}} \\ $$$$=\:−\:\mathrm{1}.\mathrm{2}\:−\:\mathrm{j2}.\mathrm{6} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com