Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 213468 by universe last updated on 06/Nov/24

 show that the sequence {a_n } defined   recurssively by a_1 = (3/2)  a_(n ) = (√(3a_(n−1 )  −2 ))    for n≥2  converges   and find its limit.

$$\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sequence}\:\left\{\mathrm{a}_{\mathrm{n}} \right\}\:\mathrm{defined}\: \\ $$$$\mathrm{recurssively}\:\mathrm{by}\:\mathrm{a}_{\mathrm{1}} =\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\mathrm{a}_{\mathrm{n}\:} =\:\sqrt{\mathrm{3a}_{\mathrm{n}−\mathrm{1}\:} \:−\mathrm{2}\:}\:\:\:\:\mathrm{for}\:\mathrm{n}\geqslant\mathrm{2}\:\:\mathrm{converges}\: \\ $$$$\mathrm{and}\:\mathrm{find}\:\mathrm{its}\:\mathrm{limit}. \\ $$

Answered by issac last updated on 06/Nov/24

a_2 =(√(3a_1 −2))=(√((9/2)−2))=((√(10))/2)  a_1 <a_2  ....true  and let′s assume  a_(k+1) <a_(k+2)  , k∈Z   (√(3a_k −2))<(√(3a_(k+1) −2))  ∴a_k <a_(k+1)  ....true  thus we can conclude that a_(n ) is   ′′Monotonic Increase Sequence′′..  and Next we must show that sequence  a_(n ) is Bounded or Not  step 1.  Let′s show that a_n  inductively  a_n ≤2  a_1 =(3/2)≤2  and if  a_n ≤2  → a_(n+1) ≤2  a_(n+1) =(√(3a_n −2))≤2  ∴ a_n ≤2  so  Sequence {a_n } is bounded        lim_(n→∞)  a_n =2  Q.E.D

$${a}_{\mathrm{2}} =\sqrt{\mathrm{3}{a}_{\mathrm{1}} −\mathrm{2}}=\sqrt{\frac{\mathrm{9}}{\mathrm{2}}−\mathrm{2}}=\frac{\sqrt{\mathrm{10}}}{\mathrm{2}} \\ $$$${a}_{\mathrm{1}} <{a}_{\mathrm{2}} \:....\mathrm{true} \\ $$$$\mathrm{and}\:\mathrm{let}'\mathrm{s}\:\mathrm{assume}\:\:{a}_{{k}+\mathrm{1}} <{a}_{{k}+\mathrm{2}} \:,\:{k}\in\mathbb{Z} \\ $$$$\:\sqrt{\mathrm{3}{a}_{{k}} −\mathrm{2}}<\sqrt{\mathrm{3}{a}_{{k}+\mathrm{1}} −\mathrm{2}} \\ $$$$\therefore{a}_{{k}} <{a}_{{k}+\mathrm{1}} \:....\mathrm{true} \\ $$$$\mathrm{thus}\:\mathrm{we}\:\mathrm{can}\:\mathrm{conclude}\:\mathrm{that}\:{a}_{{n}\:} \mathrm{is} \\ $$$$\:''\mathrm{Monotonic}\:\mathrm{Increase}\:\mathrm{Sequence}''.. \\ $$$$\mathrm{and}\:\mathrm{Next}\:\mathrm{we}\:\mathrm{must}\:\mathrm{show}\:\mathrm{that}\:\mathrm{sequence} \\ $$$${a}_{{n}\:} \mathrm{is}\:\boldsymbol{\mathrm{Bounded}}\:\boldsymbol{\mathrm{or}}\:\boldsymbol{\mathrm{Not}} \\ $$$$\boldsymbol{\mathrm{step}}\:\mathrm{1}. \\ $$$$\mathrm{Let}'\mathrm{s}\:\mathrm{show}\:\mathrm{that}\:{a}_{{n}} \:\mathrm{inductively}\:\:{a}_{{n}} \leq\mathrm{2} \\ $$$${a}_{\mathrm{1}} =\frac{\mathrm{3}}{\mathrm{2}}\leq\mathrm{2}\:\:\mathrm{and}\:\mathrm{if}\:\:{a}_{{n}} \leq\mathrm{2}\:\:\rightarrow\:{a}_{{n}+\mathrm{1}} \leq\mathrm{2} \\ $$$${a}_{{n}+\mathrm{1}} =\sqrt{\mathrm{3}{a}_{{n}} −\mathrm{2}}\leq\mathrm{2} \\ $$$$\therefore\:{a}_{{n}} \leq\mathrm{2}\:\:\mathrm{so}\:\:\mathrm{Sequence}\:\left\{{a}_{{n}} \right\}\:\mathrm{is}\:\mathrm{bounded} \\ $$$$\:\: \\ $$$$\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{a}_{{n}} =\mathrm{2}\:\:\mathbb{Q}.\mathbb{E}.\mathbb{D} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com