Question Number 217383 by peter frank last updated on 12/Mar/25 | ||
![]() | ||
$$\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{intergral} \\ $$$$\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{\mathrm{x}^{\mathrm{p}} }\mathrm{dx}\:\:\mathrm{converges}\:\mathrm{for}\:\mathrm{p}>\mathrm{1} \\ $$$$\:\mathrm{find}\:\mathrm{it}\:\mathrm{value} \\ $$ | ||
Answered by mr W last updated on 12/Mar/25 | ||
![]() | ||
$$\int_{\mathrm{1}} ^{\infty} \frac{{dx}}{{x}^{{p}} }=\left[\frac{\mathrm{1}}{\left({p}−\mathrm{1}\right){x}^{{p}−\mathrm{1}} }\right]_{\infty} ^{\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{{p}−\mathrm{1}}\left(\mathrm{1}−\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{x}^{{p}−\mathrm{1}} }\right)=\frac{\mathrm{1}}{{p}−\mathrm{1}} \\ $$ | ||