Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 17779 by Mr easymsn last updated on 10/Jul/17

show that {log_a ab}{log_b ab}=logab_a +logab_b

$${show}\:{that}\:\left\{{lo}\underset{{a}} {{g}ab}\right\}\left\{{lo}\underset{{b}} {{g}ab}\right\}={loga}\underset{{a}} {{b}}+{loga}\underset{{b}} {{b}} \\ $$

Answered by Tinkutara last updated on 11/Jul/17

(log_a  ab)(log_b  ab)  = (1 + log_a  b)(1 + log_b  a)  = 1 + log_b  a + log_a  b + 1  = log_b  b + log_b  a + log_a  b + log_a  a  = log_a  ab + log_b  ab

$$\left(\mathrm{log}_{{a}} \:{ab}\right)\left(\mathrm{log}_{{b}} \:{ab}\right) \\ $$$$=\:\left(\mathrm{1}\:+\:\mathrm{log}_{{a}} \:{b}\right)\left(\mathrm{1}\:+\:\mathrm{log}_{{b}} \:{a}\right) \\ $$$$=\:\mathrm{1}\:+\:\mathrm{log}_{{b}} \:{a}\:+\:\mathrm{log}_{{a}} \:{b}\:+\:\mathrm{1} \\ $$$$=\:\mathrm{log}_{{b}} \:{b}\:+\:\mathrm{log}_{{b}} \:{a}\:+\:\mathrm{log}_{{a}} \:{b}\:+\:\mathrm{log}_{{a}} \:{a} \\ $$$$=\:\boldsymbol{\mathrm{log}}_{\boldsymbol{{a}}} \:\boldsymbol{{ab}}\:+\:\boldsymbol{\mathrm{log}}_{\boldsymbol{{b}}} \:\boldsymbol{{ab}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com