Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 192138 by Mastermind last updated on 09/May/23

show that   f(x,y) = {_(0                           (x,y)=(0,0)) ^(((x^2 y)/(x^6  + 2y^2 ))            (x,y)≠ (0,0))   has a directional derivative in the  direction of an arbitrary unit vector  φ at (0,0), but f  is not continous at (0,0)

$$\mathrm{show}\:\mathrm{that}\: \\ $$$$\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)\:=\:\left\{_{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{x},\mathrm{y}\right)=\left(\mathrm{0},\mathrm{0}\right)} ^{\frac{\mathrm{x}^{\mathrm{2}} \mathrm{y}}{\mathrm{x}^{\mathrm{6}} \:+\:\mathrm{2y}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{x},\mathrm{y}\right)\neq\:\left(\mathrm{0},\mathrm{0}\right)} \right. \\ $$$$\mathrm{has}\:\mathrm{a}\:\mathrm{directional}\:\mathrm{derivative}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{direction}\:\mathrm{of}\:\mathrm{an}\:\mathrm{arbitrary}\:\mathrm{unit}\:\mathrm{vector} \\ $$$$\phi\:\mathrm{at}\:\left(\mathrm{0},\mathrm{0}\right),\:\mathrm{but}\:\mathrm{f}\:\:\mathrm{is}\:\mathrm{not}\:\mathrm{continous}\:\mathrm{at}\:\left(\mathrm{0},\mathrm{0}\right)\: \\ $$

Answered by gatocomcirrose last updated on 09/May/23

(∂f/∂x)(0,0)=lim_(x→0) ((f(x,0)−f(0,0))/(x−0))=0  (∂f/∂y)(0,0)=lim_(y→0) ((f(0,y)−f(0,0))/(y−0))=0  ⇒▽f(0,0)=((∂f/∂x)(0,0), (∂f/∂y)(0,0))=(0,0)  ⇒directional derivative=  ▽f(0,0).φ=(0,0).φ=0    lim_((x,y)→(0,0)) ((x^2 y)/(x^6 +2y^2 ))=lim_(x→0) f(x,0)=0=lim_(y→0) f(0,x)  =^(y=x^2 ) lim_(x→0) (x^4 /(x^6 +2x^4 ))=lim_(x→0) (1/(x^2 +2))=(1/2), contradiction  ⇒f is not continuous at (0,0)

$$\frac{\partial\mathrm{f}}{\partial\mathrm{x}}\left(\mathrm{0},\mathrm{0}\right)=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{f}\left(\mathrm{x},\mathrm{0}\right)−\mathrm{f}\left(\mathrm{0},\mathrm{0}\right)}{\mathrm{x}−\mathrm{0}}=\mathrm{0} \\ $$$$\frac{\partial\mathrm{f}}{\partial\mathrm{y}}\left(\mathrm{0},\mathrm{0}\right)=\underset{\mathrm{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{f}\left(\mathrm{0},\mathrm{y}\right)−\mathrm{f}\left(\mathrm{0},\mathrm{0}\right)}{\mathrm{y}−\mathrm{0}}=\mathrm{0} \\ $$$$\Rightarrow\bigtriangledown\mathrm{f}\left(\mathrm{0},\mathrm{0}\right)=\left(\frac{\partial\mathrm{f}}{\partial\mathrm{x}}\left(\mathrm{0},\mathrm{0}\right),\:\frac{\partial\mathrm{f}}{\partial\mathrm{y}}\left(\mathrm{0},\mathrm{0}\right)\right)=\left(\mathrm{0},\mathrm{0}\right) \\ $$$$\Rightarrow\mathrm{directional}\:\mathrm{derivative}= \\ $$$$\bigtriangledown\mathrm{f}\left(\mathrm{0},\mathrm{0}\right).\phi=\left(\mathrm{0},\mathrm{0}\right).\phi=\mathrm{0} \\ $$$$ \\ $$$$\underset{\left({x},\mathrm{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} {\mathrm{lim}}\frac{\mathrm{x}^{\mathrm{2}} \mathrm{y}}{\mathrm{x}^{\mathrm{6}} +\mathrm{2y}^{\mathrm{2}} }=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}f}\left(\mathrm{x},\mathrm{0}\right)=\mathrm{0}=\underset{\mathrm{y}\rightarrow\mathrm{0}} {\mathrm{lim}f}\left(\mathrm{0},\mathrm{x}\right) \\ $$$$\overset{\mathrm{y}=\mathrm{x}^{\mathrm{2}} } {=}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{x}^{\mathrm{6}} +\mathrm{2x}^{\mathrm{4}} }=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}},\:\mathrm{contradiction} \\ $$$$\Rightarrow\mathrm{f}\:\mathrm{is}\:\mathrm{not}\:\mathrm{continuous}\:\mathrm{at}\:\left(\mathrm{0},\mathrm{0}\right) \\ $$

Commented by Mastermind last updated on 14/May/23

Thank you so much BOSS

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{BOSS} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com