Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 63300 by Rio Michael last updated on 02/Jul/19

show that    a) 1 + tan ((π/4) + A) = (2/(1−tanA))  b) 2cos2θsinθ + 9sinθ + 3 ≡ 11sinθ − 4sin^3 θ + 3

$${show}\:{that}\:\: \\ $$$$\left.{a}\right)\:\mathrm{1}\:+\:{tan}\:\left(\frac{\pi}{\mathrm{4}}\:+\:{A}\right)\:=\:\frac{\mathrm{2}}{\mathrm{1}−{tanA}} \\ $$$$\left.{b}\right)\:\mathrm{2}{cos}\mathrm{2}\theta{sin}\theta\:+\:\mathrm{9}{sin}\theta\:+\:\mathrm{3}\:\equiv\:\mathrm{11}{sin}\theta\:−\:\mathrm{4}{sin}^{\mathrm{3}} \theta\:+\:\mathrm{3} \\ $$

Commented by kaivan.ahmadi last updated on 02/Jul/19

a.    1+((tg((π/4))+tg(A))/(1−tg((π/4))tg(A)))=((1−tg(A)+1+tg(A))/(1−tg(A)))=(2/(1−tg(A)))  b.   2(1−2sin^2 θ)sinθ+9sinθ+3=  2sinθ−4sin^3 θ+9sinθ+3=11sinθ−4sin^3 θ+3

$${a}.\:\:\:\:\mathrm{1}+\frac{{tg}\left(\frac{\pi}{\mathrm{4}}\right)+{tg}\left({A}\right)}{\mathrm{1}−{tg}\left(\frac{\pi}{\mathrm{4}}\right){tg}\left({A}\right)}=\frac{\mathrm{1}−{tg}\left({A}\right)+\mathrm{1}+{tg}\left({A}\right)}{\mathrm{1}−{tg}\left({A}\right)}=\frac{\mathrm{2}}{\mathrm{1}−{tg}\left({A}\right)} \\ $$$${b}.\:\:\:\mathrm{2}\left(\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} \theta\right){sin}\theta+\mathrm{9}{sin}\theta+\mathrm{3}= \\ $$$$\mathrm{2}{sin}\theta−\mathrm{4}{sin}^{\mathrm{3}} \theta+\mathrm{9}{sin}\theta+\mathrm{3}=\mathrm{11}{sin}\theta−\mathrm{4}{sin}^{\mathrm{3}} \theta+\mathrm{3} \\ $$

Commented by Rio Michael last updated on 02/Jul/19

thats right

$${thats}\:{right} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com