Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 201829 by 281981 last updated on 13/Dec/23

shortest distance from (−6,0)to x^2 −y^2 +16=0

$${shortest}\:{distance}\:{from}\:\left(−\mathrm{6},\mathrm{0}\right){to}\:{x}^{\mathrm{2}} −{y}^{\mathrm{2}} +\mathrm{16}=\mathrm{0} \\ $$

Answered by esmaeil last updated on 13/Dec/23

d=(√((x+6)^2 +y^2 ))=(√(x^2 +12x+36+x^2 +16))=  (√(2x^2 +12x+52))=(√(2(x+3)^2 +34))  if(x=−3)→d=shortest=(√(34))

$${d}=\sqrt{\left({x}+\mathrm{6}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }=\sqrt{\overset{\mathrm{2}} {{x}}+\mathrm{12}{x}+\mathrm{36}+\overset{\mathrm{2}} {{x}}+\mathrm{16}}= \\ $$$$\sqrt{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{12}{x}+\mathrm{52}}=\sqrt{\mathrm{2}\left({x}+\mathrm{3}\overset{\mathrm{2}} {\right)}+\mathrm{34}} \\ $$$${if}\left({x}=−\mathrm{3}\right)\rightarrow{d}={shortest}=\sqrt{\mathrm{34}} \\ $$$$ \\ $$$$ \\ $$

Commented by 281981 last updated on 14/Dec/23

tnq sir

$${tnq}\:{sir} \\ $$

Answered by mr W last updated on 13/Dec/23

(x+6)^2 +y^2 =d^2   x^2 −y^2 +16=0  x^2 −d^2 +(x^2 +6)^2 +16=0  2x^2 +12x+52−d^2 =0  Δ=12^2 −4×2×(52−d^2 )=0  d^2 =34  ⇒d=(√(34))

$$\left({x}+\mathrm{6}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={d}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} −{y}^{\mathrm{2}} +\mathrm{16}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −{d}^{\mathrm{2}} +\left({x}^{\mathrm{2}} +\mathrm{6}\right)^{\mathrm{2}} +\mathrm{16}=\mathrm{0} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +\mathrm{12}{x}+\mathrm{52}−{d}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Delta=\mathrm{12}^{\mathrm{2}} −\mathrm{4}×\mathrm{2}×\left(\mathrm{52}−{d}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${d}^{\mathrm{2}} =\mathrm{34} \\ $$$$\Rightarrow{d}=\sqrt{\mathrm{34}} \\ $$

Commented by 281981 last updated on 14/Dec/23

tnq sir

$${tnq}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com