Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 210788 by liuxinnan last updated on 19/Aug/24

s=Σ_(i=1) ^∞ 2^i   2s=s−1  s=1 ?   how to explain it  and how to judge which case can use this way

$${s}=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{2}^{{i}} \\ $$$$\mathrm{2}{s}={s}−\mathrm{1} \\ $$$${s}=\mathrm{1}\:? \\ $$$$\:{how}\:{to}\:{explain}\:{it} \\ $$$${and}\:{how}\:{to}\:{judge}\:{which}\:{case}\:{can}\:{use}\:{this}\:{way} \\ $$

Answered by Berbere last updated on 19/Aug/24

when You have eqation  the variable is in set  2s=s−1  have s∈R..?  R=]−∞,∞[  s=Σ_(i=1) ^∞ 2^i >2^n ;∀n∈N  s→∞∉R

$${when}\:{You}\:{have}\:{eqation} \\ $$$${the}\:{variable}\:{is}\:{in}\:{set} \\ $$$$\mathrm{2}{s}={s}−\mathrm{1}\:\:{have}\:{s}\in\mathbb{R}..? \\ $$$$\left.\mathbb{R}=\right]−\infty,\infty\left[\right. \\ $$$${s}=\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{2}^{{i}} >\mathrm{2}^{{n}} ;\forall{n}\in\mathbb{N} \\ $$$${s}\rightarrow\infty\notin\mathbb{R} \\ $$$$ \\ $$

Commented by liuxinnan last updated on 20/Aug/24

thanks

$${thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com