Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 129018 by BHOOPENDRA last updated on 12/Jan/21

((((√s)−1)^2 )/s^2 ) find the inverse laplace transformtion

$$\frac{\left(\sqrt{{s}}−\mathrm{1}\right)^{\mathrm{2}} }{{s}^{\mathrm{2}} }\:{find}\:{the}\:{inverse}\:{laplace}\:{transformtion} \\ $$

Answered by Dwaipayan Shikari last updated on 12/Jan/21

L^(−1) ((1/s)−(2/( s^(3/2) ))+(1/s^2 ))  =1−4(√(t/π))+t          [  ∫_0 ^∞ t^(1/2) e^(−st) dt=((√π)/(2s^(3/2) ))⇒(2/( (√π)))L((√t))=(1/( (√s^3 )))]

$$\mathscr{L}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{s}}−\frac{\mathrm{2}}{\:{s}^{\frac{\mathrm{3}}{\mathrm{2}}} }+\frac{\mathrm{1}}{{s}^{\mathrm{2}} }\right) \\ $$$$=\mathrm{1}−\mathrm{4}\sqrt{\frac{{t}}{\pi}}+{t}\:\:\:\:\:\:\:\:\:\:\left[\:\:\int_{\mathrm{0}} ^{\infty} {t}^{\frac{\mathrm{1}}{\mathrm{2}}} {e}^{−{st}} {dt}=\frac{\sqrt{\pi}}{\mathrm{2}{s}^{\frac{\mathrm{3}}{\mathrm{2}}} }\Rightarrow\frac{\mathrm{2}}{\:\sqrt{\pi}}\mathscr{L}\left(\sqrt{{t}}\right)=\frac{\mathrm{1}}{\:\sqrt{{s}^{\mathrm{3}} }}\right] \\ $$

Commented by BHOOPENDRA last updated on 12/Jan/21

ans.is not crct sir ...its in t form

$${ans}.{is}\:{not}\:{crct}\:{sir}\:...{its}\:{in}\:{t}\:{form} \\ $$

Commented by Dwaipayan Shikari last updated on 12/Jan/21

It is already in ′ t′  form  t+1−((4(√t))/( (√π)))

$${It}\:{is}\:{already}\:{in}\:'\:{t}'\:\:{form} \\ $$$${t}+\mathrm{1}−\frac{\mathrm{4}\sqrt{{t}}}{\:\sqrt{\pi}} \\ $$

Commented by BHOOPENDRA last updated on 12/Jan/21

the Ans is   ((t^((−2)/3) +3t^(1/3) )/(⌈(1/3))) so can you plz explain this

$${the}\:{Ans}\:{is}\: \\ $$$$\frac{{t}^{\frac{−\mathrm{2}}{\mathrm{3}}} +\mathrm{3}{t}^{\frac{\mathrm{1}}{\mathrm{3}}} }{\lceil\frac{\mathrm{1}}{\mathrm{3}}}\:{so}\:{can}\:{you}\:{plz}\:{explain}\:{this} \\ $$

Commented by Dwaipayan Shikari last updated on 12/Jan/21

May be error in question

$${May}\:{be}\:{error}\:{in}\:{question}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com