Question and Answers Forum

All Questions      Topic List

Logic Questions

Previous in All Question      Next in All Question      

Previous in Logic      Next in Logic      

Question Number 208420 by lepuissantcedricjunior last updated on 15/Jun/24

resoudre dans R^3    { ((x+y=3)),((y+z=5)) :}x+z=4

$$\boldsymbol{{resoudre}}\:\boldsymbol{{dans}}\:\mathbb{R}^{\mathrm{3}} \\ $$$$\begin{cases}{\boldsymbol{{x}}+\boldsymbol{{y}}=\mathrm{3}}\\{\boldsymbol{{y}}+\boldsymbol{{z}}=\mathrm{5}}\end{cases}\boldsymbol{{x}}+\boldsymbol{{z}}=\mathrm{4} \\ $$

Commented by A5T last updated on 15/Jun/24

You should learn to signify that you changed  a question.  This was your original question:   { ((x+y=3)),((y−z=−1)) :}x+z=4   ((1,1,0),(1,0,1),(0,1,(−1)) ) ((x),(y),(z) )= ((3),(4),((−1)) )

$${You}\:{should}\:{learn}\:{to}\:{signify}\:{that}\:{you}\:{changed} \\ $$$${a}\:{question}. \\ $$$${This}\:{was}\:{your}\:{original}\:{question}: \\ $$$$\begin{cases}{\boldsymbol{{x}}+\boldsymbol{{y}}=\mathrm{3}}\\{\boldsymbol{{y}}−\boldsymbol{{z}}=−\mathrm{1}}\end{cases}\boldsymbol{{x}}+\boldsymbol{{z}}=\mathrm{4} \\ $$$$\begin{pmatrix}{\mathrm{1}}&{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{1}}&{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{0}}&{\mathrm{1}}&{−\mathrm{1}}\end{pmatrix}\begin{pmatrix}{{x}}\\{{y}}\\{{z}}\end{pmatrix}=\begin{pmatrix}{\mathrm{3}}\\{\mathrm{4}}\\{−\mathrm{1}}\end{pmatrix} \\ $$

Answered by A5T last updated on 15/Jun/24

(x,3−x,4−x) infinitely many solutions

$$\left({x},\mathrm{3}−{x},\mathrm{4}−{x}\right)\:{infinitely}\:{many}\:{solutions} \\ $$

Commented by A5T last updated on 15/Jun/24

Even one equation can have infinitely many   solutions : x+y=1

$${Even}\:{one}\:{equation}\:{can}\:{have}\:{infinitely}\:{many}\: \\ $$$${solutions}\::\:{x}+{y}=\mathrm{1} \\ $$

Commented by lepuissantcedricjunior last updated on 15/Jun/24

no!!!  c′est trois equations

$${no}!!! \\ $$$$\boldsymbol{{c}}'{est}\:\boldsymbol{{trois}}\:\boldsymbol{{equations}} \\ $$

Answered by Frix last updated on 15/Jun/24

1+2=3  1+3=4  2+3=5  x=1 y=2 z=3

$$\mathrm{1}+\mathrm{2}=\mathrm{3} \\ $$$$\mathrm{1}+\mathrm{3}=\mathrm{4} \\ $$$$\mathrm{2}+\mathrm{3}=\mathrm{5} \\ $$$${x}=\mathrm{1}\:{y}=\mathrm{2}\:{z}=\mathrm{3} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com