Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 210324 by Ghisom last updated on 06/Aug/24

rationalize the denominator:  (1/(a+b^(1/3) +c^(1/3) ))

$$\mathrm{rationalize}\:\mathrm{the}\:\mathrm{denominator}: \\ $$$$\frac{\mathrm{1}}{{a}+{b}^{\mathrm{1}/\mathrm{3}} +{c}^{\mathrm{1}/\mathrm{3}} } \\ $$

Commented by Spillover last updated on 06/Aug/24

ans   (( a^2 −ab^(1/3) +b^(2/3) −ac^(1/3) −b^(1/3) c^(1/3) +c^(2/3) )/(a^3 +b+c−3ab^(1/3) c^(1/3) ))

$${ans}\: \\ $$$$\frac{\:{a}^{\mathrm{2}} −{ab}^{\frac{\mathrm{1}}{\mathrm{3}}} +{b}^{\frac{\mathrm{2}}{\mathrm{3}}} −{ac}^{\frac{\mathrm{1}}{\mathrm{3}}} −{b}^{\frac{\mathrm{1}}{\mathrm{3}}} {c}^{\frac{\mathrm{1}}{\mathrm{3}}} +{c}^{\frac{\mathrm{2}}{\mathrm{3}}} }{{a}^{\mathrm{3}} +{b}+{c}−\mathrm{3}{ab}^{\frac{\mathrm{1}}{\mathrm{3}}} {c}^{\frac{\mathrm{1}}{\mathrm{3}}} }\:\:\: \\ $$

Commented by Ghisom last updated on 06/Aug/24

there′s still −3a(bc)^(1/3)

$$\mathrm{there}'\mathrm{s}\:\mathrm{still}\:−\mathrm{3}{a}\left({bc}\right)^{\mathrm{1}/\mathrm{3}} \\ $$

Answered by Frix last updated on 08/Aug/24

1. Expand with     [ω=−(1/2)+((√3)/2)i]  (a+ωb^(1/3) +ω^2 c^(1/3) )(a+ω^2 b^(1/3) +ωc^(1/3) )=  =(a^2 −a(b^(1/3) +c^(1/3) )+b^(2/3) −b^(1/3) c^(1/3) +c^(2/3) )  The denominator now is  (a^3 +b+c−3ab^(1/3) c^(1/3) )=(p−q^(1/3) )  ⇒  2. Expand with     [p=a^3 +b+c∧q=27a^3 bc]  (p^2 +pq^(1/3) +q^(2/3) ) to get p^3 −q  The denominator now is  a^9 +3a^6 (b+c)+3a^3 (b^2 −7bc+c^2 )+(b+c)^3     [Works even with a=α^(1/3) ]

$$\mathrm{1}.\:\mathrm{Expand}\:\mathrm{with}\:\:\:\:\:\left[\omega=−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right] \\ $$$$\left({a}+\omega{b}^{\frac{\mathrm{1}}{\mathrm{3}}} +\omega^{\mathrm{2}} {c}^{\frac{\mathrm{1}}{\mathrm{3}}} \right)\left({a}+\omega^{\mathrm{2}} {b}^{\frac{\mathrm{1}}{\mathrm{3}}} +\omega{c}^{\frac{\mathrm{1}}{\mathrm{3}}} \right)= \\ $$$$=\left({a}^{\mathrm{2}} −{a}\left({b}^{\frac{\mathrm{1}}{\mathrm{3}}} +{c}^{\frac{\mathrm{1}}{\mathrm{3}}} \right)+{b}^{\frac{\mathrm{2}}{\mathrm{3}}} −{b}^{\frac{\mathrm{1}}{\mathrm{3}}} {c}^{\frac{\mathrm{1}}{\mathrm{3}}} +{c}^{\frac{\mathrm{2}}{\mathrm{3}}} \right) \\ $$$$\mathrm{The}\:\mathrm{denominator}\:\mathrm{now}\:\mathrm{is} \\ $$$$\left({a}^{\mathrm{3}} +{b}+{c}−\mathrm{3}{ab}^{\frac{\mathrm{1}}{\mathrm{3}}} {c}^{\frac{\mathrm{1}}{\mathrm{3}}} \right)=\left({p}−{q}^{\frac{\mathrm{1}}{\mathrm{3}}} \right) \\ $$$$\Rightarrow \\ $$$$\mathrm{2}.\:\mathrm{Expand}\:\mathrm{with}\:\:\:\:\:\left[{p}={a}^{\mathrm{3}} +{b}+{c}\wedge{q}=\mathrm{27}{a}^{\mathrm{3}} {bc}\right] \\ $$$$\left({p}^{\mathrm{2}} +{pq}^{\frac{\mathrm{1}}{\mathrm{3}}} +{q}^{\frac{\mathrm{2}}{\mathrm{3}}} \right)\:\mathrm{to}\:\mathrm{get}\:{p}^{\mathrm{3}} −{q} \\ $$$$\mathrm{The}\:\mathrm{denominator}\:\mathrm{now}\:\mathrm{is} \\ $$$${a}^{\mathrm{9}} +\mathrm{3}{a}^{\mathrm{6}} \left({b}+{c}\right)+\mathrm{3}{a}^{\mathrm{3}} \left({b}^{\mathrm{2}} −\mathrm{7}{bc}+{c}^{\mathrm{2}} \right)+\left({b}+{c}\right)^{\mathrm{3}} \\ $$$$ \\ $$$$\left[\mathrm{Works}\:\mathrm{even}\:\mathrm{with}\:{a}=\alpha^{\frac{\mathrm{1}}{\mathrm{3}}} \right] \\ $$

Commented by Ghisom last updated on 14/Aug/24

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com