Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 196013 by pticantor last updated on 15/Aug/23

quel est la transformer de Fourier de la fonction  suivante:  f(x)=e^(−(x^2 /2))   Find the Fourier transform of the   following fonction.

$${quel}\:{est}\:{la}\:{transformer}\:{de}\:{Fourier}\:{de}\:{la}\:{fonction} \\ $$$${suivante}: \\ $$$${f}\left({x}\right)=\boldsymbol{{e}}^{−\frac{\boldsymbol{{x}}^{\mathrm{2}} }{\mathrm{2}}} \\ $$$$\boldsymbol{{F}}{ind}\:{the}\:{Fourier}\:{transform}\:{of}\:{the}\: \\ $$$${following}\:{fonction}. \\ $$

Answered by witcher3 last updated on 16/Aug/23

∫_(−∞) ^∞ e^(−ixt) e^(−(x^2 /2)) dx  =∫_(−∞) ^∞ e^(−(1/2)(x^2 +2ixt)) dx  =∫_(−∞) ^∞ e^(−(1/2)(x+it)^2 −(t^2 /2)) dx  =e^(−(t^2 /2)) ∫_(−∞) ^∞ e^(−(1/2)(x+it)^2 ) dx  e^(−(t^2 /2)) ∫_(−∞+it) ^(∞+it) e^(−(1/2)y^2 ) dy  D=]−R,R[∪[R,R+it]∪[R+it,−R+it]∪[−R+it,−R]  ∫_D e^(−(1/2)y^2 ) dy=0  lim_(R→∞) ∣∫_(+_− R) ^(+_− R+it) e^(−(y^2 /2)) dy∣≤lim_(R→∞) ∣te^(−(1/2)(R^2 +t^2 )) ∣=0  ⇒∫_(−∞+it) ^(∞+it) e^(−(y^2 /2)) dy=∫_(−∞) ^∞ e^(−(y^2 /2)) =  2∫_0 ^∞ e^(−(y^2 /2)) dy=(√2)∫_0 ^∞ e^(−x) .x^(−(1/2)) dx  =(√2).Γ((1/2))=(√(2π))  F(e^(−(x^2 /2)) )=(√(2π))e^(−(t^2 /2)) .

$$\int_{−\infty} ^{\infty} \mathrm{e}^{−\mathrm{ixt}} \mathrm{e}^{−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}} \mathrm{dx} \\ $$$$=\int_{−\infty} ^{\infty} \mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2ixt}\right)} \mathrm{dx} \\ $$$$=\int_{−\infty} ^{\infty} \mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{x}+\mathrm{it}\right)^{\mathrm{2}} −\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{2}}} \mathrm{dx} \\ $$$$=\mathrm{e}^{−\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{2}}} \int_{−\infty} ^{\infty} \mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{x}+\mathrm{it}\right)^{\mathrm{2}} } \mathrm{dx} \\ $$$$\mathrm{e}^{−\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{2}}} \int_{−\infty+\mathrm{it}} ^{\infty+\mathrm{it}} \mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{y}^{\mathrm{2}} } \mathrm{dy} \\ $$$$\left.\mathrm{D}=\right]−\mathrm{R},\mathrm{R}\left[\cup\left[\mathrm{R},\mathrm{R}+\mathrm{it}\right]\cup\left[\mathrm{R}+\mathrm{it},−\mathrm{R}+\mathrm{it}\right]\cup\left[−\mathrm{R}+\mathrm{it},−\mathrm{R}\right]\right. \\ $$$$\int_{\mathrm{D}} \mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{y}^{\mathrm{2}} } \mathrm{dy}=\mathrm{0} \\ $$$$\underset{\mathrm{R}\rightarrow\infty} {\mathrm{lim}}\mid\int_{\underset{−} {+}\mathrm{R}} ^{\underset{−} {+}\mathrm{R}+\mathrm{it}} \mathrm{e}^{−\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{2}}} \mathrm{dy}\mid\leqslant\underset{\mathrm{R}\rightarrow\infty} {\mathrm{lim}}\mid\mathrm{te}^{−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{R}^{\mathrm{2}} +\mathrm{t}^{\mathrm{2}} \right)} \mid=\mathrm{0} \\ $$$$\Rightarrow\int_{−\infty+\mathrm{it}} ^{\infty+\mathrm{it}} \mathrm{e}^{−\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{2}}} \mathrm{dy}=\int_{−\infty} ^{\infty} \mathrm{e}^{−\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{2}}} = \\ $$$$\mathrm{2}\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{2}}} \mathrm{dy}=\sqrt{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{x}} .\mathrm{x}^{−\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{dx} \\ $$$$=\sqrt{\mathrm{2}}.\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\sqrt{\mathrm{2}\pi} \\ $$$$\mathcal{F}\left(\mathrm{e}^{−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}} \right)=\sqrt{\mathrm{2}\pi}\mathrm{e}^{−\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{2}}} . \\ $$

Commented by witcher3 last updated on 16/Aug/23

no −(x^2 /2)−ixt=−(1/2)(x^2 +2ixt)

$$\mathrm{no}\:−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}−\mathrm{ixt}=−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2ixt}\right) \\ $$

Commented by pticantor last updated on 16/Aug/23

in the 2nd line you make some mistake look well

$${in}\:{the}\:\mathrm{2}{nd}\:{line}\:{you}\:{make}\:{some}\:{mistake}\:{look}\:{well} \\ $$

Commented by pticantor last updated on 16/Aug/23

the fourier tranformation formule is:  F(f)(t)=∫_(−∞) ^(+∞) e^(−2πixt) f(x)dx !!!

$${the}\:{fourier}\:{tranformation}\:{formule}\:{is}: \\ $$$${F}\left({f}\right)\left({t}\right)=\int_{−\infty} ^{+\infty} {e}^{−\mathrm{2}\pi{ixt}} {f}\left({x}\right){dx}\:!!! \\ $$

Commented by witcher3 last updated on 17/Aug/23

Ah yes forget the formula   i thougth it e^(−ixt  ) sorry

$$\mathrm{Ah}\:\mathrm{yes}\:\mathrm{forget}\:\mathrm{the}\:\mathrm{formula}\: \\ $$$$\mathrm{i}\:\mathrm{thougth}\:\mathrm{it}\:\mathrm{e}^{−\mathrm{ixt}\:\:} \mathrm{sorry} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com