Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 47454 by peter frank last updated on 10/Nov/18

prove that the locus  of middle point of the  normal chord of the  parabola y^2 =4ax is  (y^2 /(2a))+((4a^3 )/y^2 )=x−2a

$$\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{locus} \\ $$$$\mathrm{of}\:\mathrm{middle}\:\mathrm{point}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{normal}\:\mathrm{chord}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{parabola}\:\mathrm{y}^{\mathrm{2}} =\mathrm{4ax}\:\mathrm{is} \\ $$$$\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{2a}}+\frac{\mathrm{4a}^{\mathrm{3}} }{\mathrm{y}^{\mathrm{2}} }=\mathrm{x}−\mathrm{2a} \\ $$

Answered by ajfour last updated on 10/Nov/18

M(h,k)  y=2at  ; x=at^2   M is midpoint of chord, so  ⇒  k−2at_1 = −t_1 (h−at_1 ^2 )        ....(i)     2a(t_2 +t_1 )=2k      ...(ii)      a(t_2 ^2 +t_1 ^2 )=2h       ...(iii)  ⇒ ((2a(t_2 −t_1 ))/(a(t_2 ^2 −t_1 ^2 )))= −t_1   ⇒   t_1 (t_1 +t_2 )= −2      ...(iv)  using (ii) in (iv)       t_1 ((k/a))=−2  ⇒   t_1  = ((−2a)/k)  using this in (i)    k−2a(((−2a)/k))= (((2a)/k))[h−a(((4a^2 )/k^2 ))]  Now (h,k)→(x,y)  (y+((4a^2 )/y))((y/(2a)))= x−((4a^3 )/y^2 )  ⇒  (y^2 /(2a))+2a = x−((4a^3 )/y^2 )  or     (y^2 /(2a)) + ((4a^3 )/y^2 ) = x−2a .

$${M}\left({h},{k}\right) \\ $$$${y}=\mathrm{2}{at}\:\:;\:{x}={at}^{\mathrm{2}} \\ $$$${M}\:{is}\:{midpoint}\:{of}\:{chord},\:{so} \\ $$$$\Rightarrow\:\:{k}−\mathrm{2}{at}_{\mathrm{1}} =\:−{t}_{\mathrm{1}} \left({h}−{at}_{\mathrm{1}} ^{\mathrm{2}} \right)\:\:\:\:\:\:\:\:....\left({i}\right) \\ $$$$\:\:\:\mathrm{2}{a}\left({t}_{\mathrm{2}} +{t}_{\mathrm{1}} \right)=\mathrm{2}{k}\:\:\:\:\:\:...\left({ii}\right) \\ $$$$\:\:\:\:{a}\left({t}_{\mathrm{2}} ^{\mathrm{2}} +{t}_{\mathrm{1}} ^{\mathrm{2}} \right)=\mathrm{2}{h}\:\:\:\:\:\:\:...\left({iii}\right) \\ $$$$\Rightarrow\:\frac{\mathrm{2}{a}\left({t}_{\mathrm{2}} −{t}_{\mathrm{1}} \right)}{{a}\left({t}_{\mathrm{2}} ^{\mathrm{2}} −{t}_{\mathrm{1}} ^{\mathrm{2}} \right)}=\:−{t}_{\mathrm{1}} \\ $$$$\Rightarrow\:\:\:{t}_{\mathrm{1}} \left({t}_{\mathrm{1}} +{t}_{\mathrm{2}} \right)=\:−\mathrm{2}\:\:\:\:\:\:...\left({iv}\right) \\ $$$${using}\:\left({ii}\right)\:{in}\:\left({iv}\right) \\ $$$$\:\:\:\:\:{t}_{\mathrm{1}} \left(\frac{{k}}{{a}}\right)=−\mathrm{2} \\ $$$$\Rightarrow\:\:\:{t}_{\mathrm{1}} \:=\:\frac{−\mathrm{2}{a}}{{k}} \\ $$$${using}\:{this}\:{in}\:\left({i}\right) \\ $$$$\:\:{k}−\mathrm{2}{a}\left(\frac{−\mathrm{2}{a}}{{k}}\right)=\:\left(\frac{\mathrm{2}{a}}{{k}}\right)\left[{h}−{a}\left(\frac{\mathrm{4}{a}^{\mathrm{2}} }{{k}^{\mathrm{2}} }\right)\right] \\ $$$${Now}\:\left({h},{k}\right)\rightarrow\left({x},{y}\right) \\ $$$$\left({y}+\frac{\mathrm{4}{a}^{\mathrm{2}} }{{y}}\right)\left(\frac{{y}}{\mathrm{2}{a}}\right)=\:{x}−\frac{\mathrm{4}{a}^{\mathrm{3}} }{{y}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\frac{{y}^{\mathrm{2}} }{\mathrm{2}{a}}+\mathrm{2}{a}\:=\:{x}−\frac{\mathrm{4}{a}^{\mathrm{3}} }{{y}^{\mathrm{2}} } \\ $$$${or}\:\:\:\:\:\frac{{y}^{\mathrm{2}} }{\mathrm{2}{a}}\:+\:\frac{\mathrm{4}{a}^{\mathrm{3}} }{{y}^{\mathrm{2}} }\:=\:{x}−\mathrm{2}{a}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com