Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 83430 by jagoll last updated on 02/Mar/20

prove that?  sin 3θ sin^3  θ + cos 3θ cos^3 θ =    cos^3  (2θ)

$$\mathrm{prove}\:\mathrm{that}? \\ $$$$\mathrm{sin}\:\mathrm{3}\theta\:\mathrm{sin}^{\mathrm{3}} \:\theta\:+\:\mathrm{cos}\:\mathrm{3}\theta\:\mathrm{cos}\:^{\mathrm{3}} \theta\:=\:\: \\ $$$$\mathrm{cos}\:^{\mathrm{3}} \:\left(\mathrm{2}\theta\right) \\ $$

Answered by mind is power last updated on 02/Mar/20

sin(3θ)sin^3 (θ)+cos(3θ)cos^3 (θ)  =sin(θ)sin(3θ)sin^2 (θ)+cos(θ)cos(3θ)(cos^2 (θ))  =sin(θ)sin(3θ)(1−cos^2 (θ))+cos(θ)cos(3θ)cos^2 (θ)  =sin(θ)sin(3θ)+cos^2 (θ)(cos(θ)cos(3θ)−sin(θ)sin(3θ))  =((cos(2θ)−cos(4θ))/2)+cos^2 (θ)(cos(4θ))  =cos^2 (θ)−cos^2 (2θ)+cos^2 (θ)(2cos^2 (2θ)−1)  =((1+cos(2θ))/2)−cos^2 (2θ)+(((1+cos(2θ))/2))(2cos^2 (2θ)−1)  =((1+cos(2θ))/2)−cos^2 (2θ)−(1/2)−((cos(2θ))/2)+cos^3 (2θ)+cos^2 (2θ)  =cos^3 (2θ)

$${sin}\left(\mathrm{3}\theta\right){sin}^{\mathrm{3}} \left(\theta\right)+{cos}\left(\mathrm{3}\theta\right){cos}^{\mathrm{3}} \left(\theta\right) \\ $$$$={sin}\left(\theta\right){sin}\left(\mathrm{3}\theta\right){sin}^{\mathrm{2}} \left(\theta\right)+{cos}\left(\theta\right){cos}\left(\mathrm{3}\theta\right)\left({cos}^{\mathrm{2}} \left(\theta\right)\right) \\ $$$$={sin}\left(\theta\right){sin}\left(\mathrm{3}\theta\right)\left(\mathrm{1}−{cos}^{\mathrm{2}} \left(\theta\right)\right)+{cos}\left(\theta\right){cos}\left(\mathrm{3}\theta\right){cos}^{\mathrm{2}} \left(\theta\right) \\ $$$$={sin}\left(\theta\right){sin}\left(\mathrm{3}\theta\right)+{cos}^{\mathrm{2}} \left(\theta\right)\left({cos}\left(\theta\right){cos}\left(\mathrm{3}\theta\right)−{sin}\left(\theta\right){sin}\left(\mathrm{3}\theta\right)\right) \\ $$$$=\frac{{cos}\left(\mathrm{2}\theta\right)−{cos}\left(\mathrm{4}\theta\right)}{\mathrm{2}}+{cos}^{\mathrm{2}} \left(\theta\right)\left({cos}\left(\mathrm{4}\theta\right)\right) \\ $$$$={cos}^{\mathrm{2}} \left(\theta\right)−{cos}^{\mathrm{2}} \left(\mathrm{2}\theta\right)+{cos}^{\mathrm{2}} \left(\theta\right)\left(\mathrm{2}{cos}^{\mathrm{2}} \left(\mathrm{2}\theta\right)−\mathrm{1}\right) \\ $$$$=\frac{\mathrm{1}+{cos}\left(\mathrm{2}\theta\right)}{\mathrm{2}}−{cos}^{\mathrm{2}} \left(\mathrm{2}\theta\right)+\left(\frac{\mathrm{1}+{cos}\left(\mathrm{2}\theta\right)}{\mathrm{2}}\right)\left(\mathrm{2}{cos}^{\mathrm{2}} \left(\mathrm{2}\theta\right)−\mathrm{1}\right) \\ $$$$=\frac{\mathrm{1}+{cos}\left(\mathrm{2}\theta\right)}{\mathrm{2}}−{cos}^{\mathrm{2}} \left(\mathrm{2}\theta\right)−\frac{\mathrm{1}}{\mathrm{2}}−\frac{{cos}\left(\mathrm{2}\theta\right)}{\mathrm{2}}+{cos}^{\mathrm{3}} \left(\mathrm{2}\theta\right)+{cos}^{\mathrm{2}} \left(\mathrm{2}\theta\right) \\ $$$$={cos}^{\mathrm{3}} \left(\mathrm{2}\theta\right) \\ $$$$ \\ $$

Commented by mind is power last updated on 02/Mar/20

withe pleasur

$${withe}\:{pleasur} \\ $$

Commented by jagoll last updated on 02/Mar/20

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com