Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 50914 by peter frank last updated on 22/Dec/18

prove that relative velocity  is reversed by a head on  collision

$${prove}\:{that}\:{relative}\:{velocity} \\ $$$${is}\:{reversed}\:{by}\:{a}\:{head}\:{on} \\ $$$${collision} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 22/Dec/18

for collission  velocity are v_1 ^→ =u_1 i^→   andv_2 ^⌣ = −u_2 i^→   relative velocity of v_1 ^→  w.r.t v_2 ^→  is=v_1 ^→ −v_2 ^→   =u_1 i^→ +u_2 i^→   so velocity v_2 ^→  directiin reversed and moving  along +ve x axis...

$${for}\:{collission}\:\:{velocity}\:{are}\:\overset{\rightarrow} {{v}}_{\mathrm{1}} ={u}_{\mathrm{1}} \overset{\rightarrow} {{i}}\:\:{and}\overset{\smile} {{v}}_{\mathrm{2}} =\:−{u}_{\mathrm{2}} \overset{\rightarrow} {{i}} \\ $$$${relative}\:{velocity}\:{of}\:\overset{\rightarrow} {{v}}_{\mathrm{1}} \:{w}.{r}.{t}\:\overset{\rightarrow} {{v}}_{\mathrm{2}} \:{is}=\overset{\rightarrow} {{v}}_{\mathrm{1}} −\overset{\rightarrow} {{v}}_{\mathrm{2}} \\ $$$$={u}_{\mathrm{1}} \overset{\rightarrow} {{i}}+{u}_{\mathrm{2}} \overset{\rightarrow} {{i}} \\ $$$${so}\:{velocity}\:\overset{\rightarrow} {{v}}_{\mathrm{2}} \:{directiin}\:{reversed}\:{and}\:{moving} \\ $$$${along}\:+{ve}\:{x}\:{axis}... \\ $$

Commented by peter frank last updated on 22/Dec/18

thank you

$${thank}\:{you} \\ $$

Answered by peter frank last updated on 22/Dec/18

from conservation of   linear momentum  m_1 u_(1 ) +m_(2 ) u_2 =m_1 v_1  +m_(2  ) v_2   m_(1 ) (u_(1 ) −v_(1 ) )=m_2 (v_(2 ) −u_2 )......(i)  from K.E conservation  (1/2)m_1 u_1 ^2 +(1/2)m_2 u_2 ^2 =(1/2)m_(1 ) v_(1 ) ^2 +(1/2)m_2 v_(2 ) ^2   m_1 (u_(1 ) ^2 −v_(1  ) ^2 )=m_(2 ) (v_(2  ) ^2 −u_2 ^2 ).....(ii)  divide eqn  (ii) by  eqn (i)  u_1 +v_(1 ) =v_2 +u_2   u_1 −u_(2 ) =v_(2   ) −v_1   u_2 −u_1 =−(v_2 −v_1 )

$${from}\:{conservation}\:{of}\: \\ $$$${linear}\:{momentum} \\ $$$${m}_{\mathrm{1}} {u}_{\mathrm{1}\:} +{m}_{\mathrm{2}\:} {u}_{\mathrm{2}} ={m}_{\mathrm{1}} {v}_{\mathrm{1}} \:+{m}_{\mathrm{2}\:\:} {v}_{\mathrm{2}} \\ $$$${m}_{\mathrm{1}\:} \left({u}_{\mathrm{1}\:} −{v}_{\mathrm{1}\:} \right)={m}_{\mathrm{2}} \left({v}_{\mathrm{2}\:} −{u}_{\mathrm{2}} \right)......\left({i}\right) \\ $$$${from}\:{K}.{E}\:{conservation} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{m}_{\mathrm{1}} {u}_{\mathrm{1}} ^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{m}_{\mathrm{2}} {u}_{\mathrm{2}} ^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}{m}_{\mathrm{1}\:} {v}_{\mathrm{1}\:} ^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{m}_{\mathrm{2}} {v}_{\mathrm{2}\:} ^{\mathrm{2}} \\ $$$${m}_{\mathrm{1}} \left({u}_{\mathrm{1}\:} ^{\mathrm{2}} −{v}_{\mathrm{1}\:\:} ^{\mathrm{2}} \right)={m}_{\mathrm{2}\:} \left({v}_{\mathrm{2}\:\:} ^{\mathrm{2}} −{u}_{\mathrm{2}} ^{\mathrm{2}} \right).....\left({ii}\right) \\ $$$${divide}\:{eqn}\:\:\left({ii}\right)\:{by}\:\:{eqn}\:\left({i}\right) \\ $$$${u}_{\mathrm{1}} +{v}_{\mathrm{1}\:} ={v}_{\mathrm{2}} +{u}_{\mathrm{2}} \\ $$$${u}_{\mathrm{1}} −{u}_{\mathrm{2}\:} ={v}_{\mathrm{2}\:\:\:} −{v}_{\mathrm{1}} \\ $$$${u}_{\mathrm{2}} −{u}_{\mathrm{1}} =−\left({v}_{\mathrm{2}} −{v}_{\mathrm{1}} \right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com