Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 76367 by Rio Michael last updated on 26/Dec/19

prove that  Σ_(r=1) ^∞  (1/r^2 ) = (π^2 /6)

$${prove}\:{that}\:\:\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$

Commented by mathmax by abdo last updated on 26/Dec/19

not correct

$${not}\:{correct} \\ $$

Commented by mathmax by abdo last updated on 26/Dec/19

i think Σ_(r=1) ^∞  (1/r^2 )

$${i}\:{think}\:\sum_{{r}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{r}^{\mathrm{2}} } \\ $$

Commented by Rio Michael last updated on 26/Dec/19

thanks i′ll correct that

$${thanks}\:{i}'{ll}\:{correct}\:{that} \\ $$

Commented by mathmax by abdo last updated on 28/Dec/19

let f(x)=∣x∣ ,2π periodic even  f(x) =(a_0 /2) +Σ_(n=1) ^∞  a_n cos(nx)  a_n =(2/T)∫_([T]) ∣x∣ cos(nx) =(1/π)∫_(−π) ^π  ∣x∣ cos(nx)dx  =(2/π) ∫_0 ^π  x cos(nx)dx ⇒(π/2)a_n =∫_0 ^π  x cos(nx)  =_(by parts)   [(x/n)sin(nx)]_0 ^π  −∫_0 ^π (1/n)sin(nx)dx  =−(1/n)[−(1/n)cos(nx)]_0 ^π  =(1/n^2 ){(−1)^n −1) ⇒  a_n =(2/(πn^2 )){ (−1)^n −1}  a_0 =(2/π)×(π^2 /2)=π ⇒∣x∣ =(π/2) +(2/π)Σ_(n=1) ^∞  (((−1)^n −1)/n^2 )cos(nx)  =(π/2) +(2/π)(−2) Σ_(p=0) ^∞  (1/((2p+1)^2 ))cos(2p+1)x  =(π/2)−(4/π) Σ_(p=0) ^∞   ((cos(2p+1)x)/((2p+1)^2 ))  x=0 ⇒(π/2)−(4/π) Σ_(p=0) ^∞  (1/((2p+1)^2 )) =0 ⇒(4/π)Σ_(p=0) ^∞  (1/((2p+1)^2 )) =(π/2) ⇒  Σ_(p=0) ^∞  (1/((2p+1)^2 )) =(π^2 /8)  Σ_(n=1) ^∞  (1/n^2 ) =Σ_(n=1) ^∞  (1/(4n^2 )) +Σ_(n=0) ^∞  (1/((2n+1)^2 )) ⇒  (3/4) Σ_(n=1) ^∞  (1/n^2 ) =(π^2 /8) ⇒ Σ_(n=1) ^∞  (1/n^2 ) =(4/3)×(π^2 /8) =(π^2 /6) .

$${let}\:{f}\left({x}\right)=\mid{x}\mid\:,\mathrm{2}\pi\:{periodic}\:{even} \\ $$$${f}\left({x}\right)\:=\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:{a}_{{n}} {cos}\left({nx}\right) \\ $$$${a}_{{n}} =\frac{\mathrm{2}}{{T}}\int_{\left[{T}\right]} \mid{x}\mid\:{cos}\left({nx}\right)\:=\frac{\mathrm{1}}{\pi}\int_{−\pi} ^{\pi} \:\mid{x}\mid\:{cos}\left({nx}\right){dx} \\ $$$$=\frac{\mathrm{2}}{\pi}\:\int_{\mathrm{0}} ^{\pi} \:{x}\:{cos}\left({nx}\right){dx}\:\Rightarrow\frac{\pi}{\mathrm{2}}{a}_{{n}} =\int_{\mathrm{0}} ^{\pi} \:{x}\:{cos}\left({nx}\right) \\ $$$$=_{{by}\:{parts}} \:\:\left[\frac{{x}}{{n}}{sin}\left({nx}\right)\right]_{\mathrm{0}} ^{\pi} \:−\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{1}}{{n}}{sin}\left({nx}\right){dx} \\ $$$$=−\frac{\mathrm{1}}{{n}}\left[−\frac{\mathrm{1}}{{n}}{cos}\left({nx}\right)\right]_{\mathrm{0}} ^{\pi} \:=\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left\{\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}\right)\:\Rightarrow \\ $$$${a}_{{n}} =\frac{\mathrm{2}}{\pi{n}^{\mathrm{2}} }\left\{\:\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}\right\} \\ $$$${a}_{\mathrm{0}} =\frac{\mathrm{2}}{\pi}×\frac{\pi^{\mathrm{2}} }{\mathrm{2}}=\pi\:\Rightarrow\mid{x}\mid\:=\frac{\pi}{\mathrm{2}}\:+\frac{\mathrm{2}}{\pi}\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}}{{n}^{\mathrm{2}} }{cos}\left({nx}\right) \\ $$$$=\frac{\pi}{\mathrm{2}}\:+\frac{\mathrm{2}}{\pi}\left(−\mathrm{2}\right)\:\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} }{cos}\left(\mathrm{2}{p}+\mathrm{1}\right){x} \\ $$$$=\frac{\pi}{\mathrm{2}}−\frac{\mathrm{4}}{\pi}\:\sum_{{p}=\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\mathrm{2}{p}+\mathrm{1}\right){x}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${x}=\mathrm{0}\:\Rightarrow\frac{\pi}{\mathrm{2}}−\frac{\mathrm{4}}{\pi}\:\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} }\:=\mathrm{0}\:\Rightarrow\frac{\mathrm{4}}{\pi}\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} }\:=\frac{\pi}{\mathrm{2}}\:\Rightarrow \\ $$$$\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} }\:=\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} }\:+\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$$\frac{\mathrm{3}}{\mathrm{4}}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:\Rightarrow\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:=\frac{\mathrm{4}}{\mathrm{3}}×\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com