Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 68129 by mathmax by abdo last updated on 05/Sep/19

prove that πcotan(απ)=(1/α) +Σ_(n=1) ^∞  ((2α)/(α^2 −n^2 ))  with α ∈R−Z  .  prove also that   for t≠0  cotan(t) =(1/t) +Σ_(n=1) ^∞   ((2t)/(t^2 −n^2 π^2 ))

$${prove}\:{that}\:\pi{cotan}\left(\alpha\pi\right)=\frac{\mathrm{1}}{\alpha}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{2}\alpha}{\alpha^{\mathrm{2}} −{n}^{\mathrm{2}} } \\ $$$${with}\:\alpha\:\in{R}−{Z}\:\:. \\ $$$${prove}\:{also}\:{that}\:\:\:{for}\:{t}\neq\mathrm{0} \\ $$$${cotan}\left({t}\right)\:=\frac{\mathrm{1}}{{t}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{2}{t}}{{t}^{\mathrm{2}} −{n}^{\mathrm{2}} \pi^{\mathrm{2}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com