Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 32369 by prof Abdo imad last updated on 23/Mar/18

prove that  n^(−α)  ∼ ∫_n ^(n+1)  t^(−α) dt  2) prove that  Σ_(k=1) ^n   (1/k^α ) ∼  (n^(1−α) /(1−α)) if  α<1 and  Σ_(k=1) ^n   (1/k^α ) ∼ ln(n) if α=1 .

$${prove}\:{that}\:\:{n}^{−\alpha} \:\sim\:\int_{{n}} ^{{n}+\mathrm{1}} \:{t}^{−\alpha} {dt} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{{k}^{\alpha} }\:\sim\:\:\frac{{n}^{\mathrm{1}−\alpha} }{\mathrm{1}−\alpha}\:{if}\:\:\alpha<\mathrm{1}\:{and} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{{k}^{\alpha} }\:\sim\:{ln}\left({n}\right)\:{if}\:\alpha=\mathrm{1}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com