Question Number 54371 by maxmathsup by imad last updated on 02/Feb/19 | ||
![]() | ||
$${prove}\:{that}\:{ln}\left({z}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{z}−\mathrm{1}}{\mathrm{1}+{t}\left({z}−\mathrm{1}\right)}{dt}\:. \\ $$ | ||
Commented by maxmathsup by imad last updated on 02/Feb/19 | ||
![]() | ||
$${z}\:{is}\:{a}\:{complex}\:{number}\:. \\ $$ | ||
Answered by Smail last updated on 02/Feb/19 | ||
![]() | ||
$${let}\:\:{u}={t}\left({z}−\mathrm{1}\right)\Rightarrow{du}=\left({z}−\mathrm{1}\right){dt} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{z}−\mathrm{1}}{\mathrm{1}+{t}\left({z}−\mathrm{1}\right)}{dt}=\int_{\mathrm{0}} ^{{z}−\mathrm{1}} \frac{{du}}{\mathrm{1}+{u}}=\left[{ln}\mid\mathrm{1}+{u}\mid\right]_{\mathrm{0}} ^{{z}−\mathrm{1}} \\ $$$$={ln}\mid\mathrm{1}+{z}−\mathrm{1}\mid={ln}\mid{z}\mid \\ $$ | ||
Commented by Abdo msup. last updated on 03/Feb/19 | ||
![]() | ||
$${sir}\:{what}\:{do}\:{you}\:{work}\:{in}\:{usa}... \\ $$ | ||
Commented by Smail last updated on 03/Feb/19 | ||
![]() | ||
$${I}\:{am}\:{still}\:{studying}\:\:{and}\:{my}\:{major}\:{is}\: \\ $$$${electrical}\:{engineering} \\ $$ | ||
Commented by rahul 19 last updated on 03/Feb/19 | ||
![]() | ||
$${wow}!\:{which}\:{university}? \\ $$ | ||
Commented by maxmathsup by imad last updated on 03/Feb/19 | ||
![]() | ||
$${good}\:{luck}\:{sir}\:{Smail}...{i}\:{hoppe}\:{to}\:{visit}\:{usa}\:{somedays}... \\ $$ | ||
Commented by Smail last updated on 03/Feb/19 | ||
![]() | ||
$${Thank}\:{you} \\ $$ | ||