Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 40434 by vitlu last updated on 21/Jul/18

prove that ln(x) is irrational for x natural

$${prove}\:{that}\:\mathrm{ln}\left({x}\right)\:{is}\:{irrational}\:{for}\:{x}\:{natural} \\ $$

Commented by math khazana by abdo last updated on 21/Jul/18

let x=n natural >1 let prove that ln(n)∉Q  if ln(n)∈Q  ∃(p,q)∈N^2  /ln(n) =(p/q)  we can take D(p,q)=1 ⇒n=e^(p/q)  ⇒n^q  =e^p  but  e^p  =Σ_(k=0) ^∞  (e^(kp) /(k!))  ∉ N   so the equality n^q =e^p  is  impossible because n^q  ∈N and e^p  ∉ N .

$${let}\:{x}={n}\:{natural}\:>\mathrm{1}\:{let}\:{prove}\:{that}\:{ln}\left({n}\right)\notin{Q} \\ $$$${if}\:{ln}\left({n}\right)\in{Q}\:\:\exists\left({p},{q}\right)\in{N}^{\mathrm{2}} \:/{ln}\left({n}\right)\:=\frac{{p}}{{q}} \\ $$$${we}\:{can}\:{take}\:{D}\left({p},{q}\right)=\mathrm{1}\:\Rightarrow{n}={e}^{\frac{{p}}{{q}}} \:\Rightarrow{n}^{{q}} \:={e}^{{p}} \:{but} \\ $$$${e}^{{p}} \:=\sum_{{k}=\mathrm{0}} ^{\infty} \:\frac{{e}^{{kp}} }{{k}!}\:\:\notin\:{N}\:\:\:{so}\:{the}\:{equality}\:{n}^{{q}} ={e}^{{p}} \:{is} \\ $$$${impossible}\:{because}\:{n}^{{q}} \:\in{N}\:{and}\:{e}^{{p}} \:\notin\:{N}\:. \\ $$

Commented by vitlu last updated on 21/Jul/18

thanks

$${thanks} \\ $$$$ \\ $$

Commented by maxmathsup by imad last updated on 21/Jul/18

you are wecome

$${you}\:{are}\:{wecome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com