Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 140050 by mnjuly1970 last updated on 03/May/21

      prove  that::         φ :=lim_(n→∞) (n/( (√(2k)))) .(√(1−cos^k (((2π)/n)))) =π          ................

$$\:\:\:\:\:\:{prove}\:\:{that}:: \\ $$$$\:\:\:\:\:\:\:\phi\::={lim}_{{n}\rightarrow\infty} \frac{{n}}{\:\sqrt{\mathrm{2}{k}}}\:.\sqrt{\mathrm{1}−{cos}^{{k}} \left(\frac{\mathrm{2}\pi}{{n}}\right)}\:=\pi \\ $$$$\:\:\:\:\:\:\:\:................ \\ $$$$ \\ $$

Answered by Kamel last updated on 04/May/21

Answered by Dwaipayan Shikari last updated on 03/May/21

(n/( (√(2k))))(√(1−cos^k (((2π)/n))))≈2(n/( (√(2k))))(√(1−(1−((2π^2 k)/(2!n^2 )))))=(((√2)nπ)/( (√(2k)))).((√k)/n)=π

$$\frac{{n}}{\:\sqrt{\mathrm{2}{k}}}\sqrt{\mathrm{1}−{cos}^{{k}} \left(\frac{\mathrm{2}\pi}{{n}}\right)}\approx\mathrm{2}\frac{{n}}{\:\sqrt{\mathrm{2}{k}}}\sqrt{\mathrm{1}−\left(\mathrm{1}−\frac{\mathrm{2}\pi^{\mathrm{2}} {k}}{\mathrm{2}!{n}^{\mathrm{2}} }\right)}=\frac{\sqrt{\mathrm{2}}{n}\pi}{\:\sqrt{\mathrm{2}{k}}}.\frac{\sqrt{{k}}}{{n}}=\pi \\ $$

Answered by mnjuly1970 last updated on 04/May/21

           prove::.............              (1/n) =t −⇒{_( t→0^+ ) ^( n→∞)           φ:= lim_(t→0^+ ) (1/( (√(2k)))) ((1/t))(√(1−cos^k (2πt)))           :=lim_(t→0^+ ) (1/( (√(2k)))) ((1/t)){(√(1−cos(2πt))) .(√(1+cos(2πt)+...+cos^(k−1) (2πt)))            :=lim_(t→0^+ ) (1/( (√(2k))))((1/t)){(√(2sin^2 (πt))) .(√(1+cos(πt)+...+cos^(k−1) (2πt))) }           :=lim_(t→0^+ ) (((√2) sin(πt))/( (√2) (√k))) (√([1+1+1+....+1]:=k  times))                                  ........  φ : = π .......

$$\:\:\:\:\:\:\:\:\:\:\:{prove}::............. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{{n}}\:={t}\:−\Rightarrow\left\{_{\:{t}\rightarrow\mathrm{0}^{+} } ^{\:{n}\rightarrow\infty} \:\right. \\ $$$$\:\:\:\:\:\:\:\phi:=\:{lim}_{{t}\rightarrow\mathrm{0}^{+} } \frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{k}}}\:\left(\frac{\mathrm{1}}{{t}}\right)\sqrt{\mathrm{1}−{cos}^{{k}} \left(\mathrm{2}\pi{t}\right)}\: \\ $$$$\:\:\:\:\:\:\:\::={lim}_{{t}\rightarrow\mathrm{0}^{+} } \frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{k}}}\:\left(\frac{\mathrm{1}}{{t}}\right)\left\{\sqrt{\mathrm{1}−{cos}\left(\mathrm{2}\pi{t}\right)}\:.\sqrt{\mathrm{1}+{cos}\left(\mathrm{2}\pi{t}\right)+...+{cos}^{{k}−\mathrm{1}} \left(\mathrm{2}\pi{t}\right)}\:\right. \\ $$$$\:\:\:\:\:\:\:\:\::={lim}_{{t}\rightarrow\mathrm{0}^{+} } \frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{k}}}\left(\frac{\mathrm{1}}{{t}}\right)\left\{\sqrt{\mathrm{2}{sin}^{\mathrm{2}} \left(\pi{t}\right)}\:.\sqrt{\mathrm{1}+{cos}\left(\pi{t}\right)+...+{cos}^{{k}−\mathrm{1}} \left(\mathrm{2}\pi{t}\right)}\:\right\} \\ $$$$\:\:\:\:\:\:\:\:\::={lim}_{{t}\rightarrow\mathrm{0}^{+} } \frac{\sqrt{\mathrm{2}}\:{sin}\left(\pi{t}\right)}{\:\sqrt{\mathrm{2}}\:\sqrt{{k}}}\:\sqrt{\left[\mathrm{1}+\mathrm{1}+\mathrm{1}+....+\mathrm{1}\right]:={k}\:\:{times}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:........\:\:\phi\::\:=\:\pi\:....... \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com