Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 75936 by Rio Michael last updated on 21/Dec/19

prove that if [((x + 1)/x)] = 0 then x ≤ −1

$${prove}\:{that}\:{if}\:\left[\frac{{x}\:+\:\mathrm{1}}{{x}}\right]\:=\:\mathrm{0}\:{then}\:{x}\:\leqslant\:−\mathrm{1} \\ $$

Commented by turbo msup by abdo last updated on 21/Dec/19

[((x+1)/x)]=0 ⇒[1+(1/x)]=0 ⇒  1+[(1/x)]=0 ⇒[(1/x)]=−1 ⇒  −1≤(1/x)<0 ⇒0<−(1/x)≤−1 ⇒  ⇒−x≥−1 ⇒x≤−1

$$\left[\frac{{x}+\mathrm{1}}{{x}}\right]=\mathrm{0}\:\Rightarrow\left[\mathrm{1}+\frac{\mathrm{1}}{{x}}\right]=\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{1}+\left[\frac{\mathrm{1}}{{x}}\right]=\mathrm{0}\:\Rightarrow\left[\frac{\mathrm{1}}{{x}}\right]=−\mathrm{1}\:\Rightarrow \\ $$$$−\mathrm{1}\leqslant\frac{\mathrm{1}}{{x}}<\mathrm{0}\:\Rightarrow\mathrm{0}<−\frac{\mathrm{1}}{{x}}\leqslant−\mathrm{1}\:\Rightarrow \\ $$$$\Rightarrow−{x}\geqslant−\mathrm{1}\:\Rightarrow{x}\leqslant−\mathrm{1} \\ $$

Commented by Rio Michael last updated on 21/Dec/19

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com