Question Number 75936 by Rio Michael last updated on 21/Dec/19 | ||
$${prove}\:{that}\:{if}\:\left[\frac{{x}\:+\:\mathrm{1}}{{x}}\right]\:=\:\mathrm{0}\:{then}\:{x}\:\leqslant\:−\mathrm{1} \\ $$ | ||
Commented by turbo msup by abdo last updated on 21/Dec/19 | ||
$$\left[\frac{{x}+\mathrm{1}}{{x}}\right]=\mathrm{0}\:\Rightarrow\left[\mathrm{1}+\frac{\mathrm{1}}{{x}}\right]=\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{1}+\left[\frac{\mathrm{1}}{{x}}\right]=\mathrm{0}\:\Rightarrow\left[\frac{\mathrm{1}}{{x}}\right]=−\mathrm{1}\:\Rightarrow \\ $$$$−\mathrm{1}\leqslant\frac{\mathrm{1}}{{x}}<\mathrm{0}\:\Rightarrow\mathrm{0}<−\frac{\mathrm{1}}{{x}}\leqslant−\mathrm{1}\:\Rightarrow \\ $$$$\Rightarrow−{x}\geqslant−\mathrm{1}\:\Rightarrow{x}\leqslant−\mathrm{1} \\ $$ | ||
Commented by Rio Michael last updated on 21/Dec/19 | ||
$${thanks}\:{sir} \\ $$ | ||