Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 192220 by gatocomcirrose last updated on 12/May/23

  prove that if n∈N, n>1 and n is odd then   1^n +...+(n−1)^n  is divisible by n  (dont use ≡(modn))

$$ \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{if}\:\mathrm{n}\in\mathbb{N},\:\mathrm{n}>\mathrm{1}\:\mathrm{and}\:\mathrm{n}\:\mathrm{is}\:\mathrm{odd}\:\mathrm{then} \\ $$$$\:\mathrm{1}^{\mathrm{n}} +...+\left(\mathrm{n}−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{n} \\ $$$$\left(\mathrm{dont}\:\mathrm{use}\:\equiv\left(\mathrm{modn}\right)\right) \\ $$

Commented by deleteduser1 last updated on 12/May/23

It follows from the fact that a^n +b^n  is divisible   by a+b when n is odd.  {1^n +(n−1)^n }+{2^n +(n−2)^n }+...+{(((n−1)/2))^n +(((n+1)/2))^n }

$${It}\:{follows}\:{from}\:{the}\:{fact}\:{that}\:{a}^{{n}} +{b}^{{n}} \:{is}\:{divisible} \\ $$$$\:{by}\:{a}+{b}\:{when}\:{n}\:{is}\:{odd}. \\ $$$$\left\{\mathrm{1}^{{n}} +\left({n}−\mathrm{1}\right)^{{n}} \right\}+\left\{\mathrm{2}^{{n}} +\left({n}−\mathrm{2}\right)^{{n}} \right\}+...+\left\{\left(\frac{{n}−\mathrm{1}}{\mathrm{2}}\right)^{{n}} +\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)^{{n}} \right\} \\ $$

Commented by gatocomcirrose last updated on 12/May/23

ohhhh yeahh thanks bro

$$\mathrm{ohhhh}\:\mathrm{yeahh}\:\mathrm{thanks}\:\mathrm{bro} \\ $$

Answered by Frix last updated on 12/May/23

1^n +(n−1)^n =1^n +n×(...)−1^n =n×(...)  2^n +(n−2)^n =2^n +n×(...)−2^n =n×(...)  ...  You get tbe idea?

$$\mathrm{1}^{{n}} +\left({n}−\mathrm{1}\right)^{{n}} =\mathrm{1}^{{n}} +{n}×\left(...\right)−\mathrm{1}^{{n}} ={n}×\left(...\right) \\ $$$$\mathrm{2}^{{n}} +\left({n}−\mathrm{2}\right)^{{n}} =\mathrm{2}^{{n}} +{n}×\left(...\right)−\mathrm{2}^{{n}} ={n}×\left(...\right) \\ $$$$... \\ $$$$\mathrm{You}\:\mathrm{get}\:\mathrm{tbe}\:\mathrm{idea}? \\ $$

Commented by gatocomcirrose last updated on 12/May/23

yeah thank you!

$$\mathrm{yeah}\:\mathrm{thank}\:\mathrm{you}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com