Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 72344 by Rio Michael last updated on 27/Oct/19

prove that  e^(lnx)  = x  or  a^(log_a x)  = x

$${prove}\:{that}\:\:{e}^{{lnx}} \:=\:{x} \\ $$$${or}\:\:{a}^{{log}_{{a}} {x}} \:=\:{x} \\ $$

Commented by Prithwish sen last updated on 27/Oct/19

let lnx = M  ∴ e^M = x  putting the value of M  e^(lnx)  = x   proved

$$\boldsymbol{\mathrm{let}}\:\boldsymbol{\mathrm{lnx}}\:=\:\boldsymbol{\mathrm{M}} \\ $$$$\therefore\:\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{M}}} =\:\boldsymbol{\mathrm{x}} \\ $$$$\boldsymbol{\mathrm{putting}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{M}} \\ $$$$\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{lnx}}} \:=\:\boldsymbol{\mathrm{x}}\:\:\:\boldsymbol{\mathrm{proved}} \\ $$

Commented by Tony Lin last updated on 27/Oct/19

let log_a x=y  a^y =x  ⇒log_a x=y  ⇒a^(log_a x) =x

$${let}\:{log}_{{a}} {x}={y} \\ $$$${a}^{{y}} ={x} \\ $$$$\Rightarrow{log}_{{a}} {x}={y} \\ $$$$\Rightarrow{a}^{{log}_{{a}} {x}} ={x} \\ $$

Commented by Rio Michael last updated on 30/Oct/19

thank you sirs

$${thank}\:{you}\:{sirs} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com