Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 122555 by ZiYangLee last updated on 18/Nov/20

prove that determinant ((a,1,(a^2 (b+c))),(b,1,(b^2 (c+a))),(c,1,(c^2 (a+b))))=0

$${prove}\:{that}\begin{vmatrix}{{a}}&{\mathrm{1}}&{{a}^{\mathrm{2}} \left({b}+{c}\right)}\\{{b}}&{\mathrm{1}}&{{b}^{\mathrm{2}} \left({c}+{a}\right)}\\{{c}}&{\mathrm{1}}&{{c}^{\mathrm{2}} \left({a}+{b}\right)}\end{vmatrix}=\mathrm{0} \\ $$

Commented by bramlexs22 last updated on 18/Nov/20

⇒a  determinant (((1       b^2 c+ab^2 )),((1      ac^2 +bc^2 )))−1. determinant (((b     b^2 c+ab^2 )),((c    ac^2 +bc^2 )))+(a^2 b+a^2 c) determinant (((b   1)),((c   1)))

$$\Rightarrow{a}\:\begin{vmatrix}{\mathrm{1}\:\:\:\:\:\:\:{b}^{\mathrm{2}} {c}+{ab}^{\mathrm{2}} }\\{\mathrm{1}\:\:\:\:\:\:{ac}^{\mathrm{2}} +{bc}^{\mathrm{2}} }\end{vmatrix}−\mathrm{1}.\begin{vmatrix}{{b}\:\:\:\:\:{b}^{\mathrm{2}} {c}+{ab}^{\mathrm{2}} }\\{{c}\:\:\:\:{ac}^{\mathrm{2}} +{bc}^{\mathrm{2}} }\end{vmatrix}+\left({a}^{\mathrm{2}} {b}+{a}^{\mathrm{2}} {c}\right)\begin{vmatrix}{{b}\:\:\:\mathrm{1}}\\{{c}\:\:\:\mathrm{1}}\end{vmatrix} \\ $$$$ \\ $$

Answered by $@y@m last updated on 18/Nov/20

= determinant ((a,1,(a^2 (b+c))),(b,1,(b^2 (c+a))),(c,1,(c^2 (a+b))))  = determinant (((a−b),0,(a^2 (b+c)−b^2 (c+a))),((b−c),0,(b^2 (c+a)−c^2 (a+b))),(c,1,(c^2 (a+b)))) , byR_1 →R_1 −R_(2 ) & R_2 →R_2 −R_3   = determinant (((a−b),0,(ab(a−b)+c(a^2 −b^2 ))),((b−c),0,(bc(b−c)+a(b^2 −c^2 ))),(1,1,(c^2 (a+b))))    =(a−b)(b−c) determinant ((1,0,(ab+c(a+b))),(1,0,(bc+a(b+c))),(1,(−c),(c^2 (a+b))))    =0 (∵R_1 =R_2 )

$$=\begin{vmatrix}{{a}}&{\mathrm{1}}&{{a}^{\mathrm{2}} \left({b}+{c}\right)}\\{{b}}&{\mathrm{1}}&{{b}^{\mathrm{2}} \left({c}+{a}\right)}\\{{c}}&{\mathrm{1}}&{{c}^{\mathrm{2}} \left({a}+{b}\right)}\end{vmatrix} \\ $$$$=\begin{vmatrix}{{a}−{b}}&{\mathrm{0}}&{{a}^{\mathrm{2}} \left({b}+{c}\right)−{b}^{\mathrm{2}} \left({c}+{a}\right)}\\{{b}−{c}}&{\mathrm{0}}&{{b}^{\mathrm{2}} \left({c}+{a}\right)−{c}^{\mathrm{2}} \left({a}+{b}\right)}\\{{c}}&{\mathrm{1}}&{{c}^{\mathrm{2}} \left({a}+{b}\right)}\end{vmatrix}\:,\:{byR}_{\mathrm{1}} \rightarrow{R}_{\mathrm{1}} −{R}_{\mathrm{2}\:} \&\:{R}_{\mathrm{2}} \rightarrow{R}_{\mathrm{2}} −{R}_{\mathrm{3}} \\ $$$$=\begin{vmatrix}{{a}−{b}}&{\mathrm{0}}&{{ab}\left({a}−{b}\right)+{c}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)}\\{{b}−{c}}&{\mathrm{0}}&{{bc}\left({b}−{c}\right)+{a}\left({b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)}\\{\mathrm{1}}&{\mathrm{1}}&{{c}^{\mathrm{2}} \left({a}+{b}\right)}\end{vmatrix}\:\: \\ $$$$=\left({a}−{b}\right)\left({b}−{c}\right)\begin{vmatrix}{\mathrm{1}}&{\mathrm{0}}&{{ab}+{c}\left({a}+{b}\right)}\\{\mathrm{1}}&{\mathrm{0}}&{{bc}+{a}\left({b}+{c}\right)}\\{\mathrm{1}}&{−{c}}&{{c}^{\mathrm{2}} \left({a}+{b}\right)}\end{vmatrix}\:\: \\ $$$$=\mathrm{0}\:\left(\because{R}_{\mathrm{1}} ={R}_{\mathrm{2}} \right) \\ $$

Commented by ZiYangLee last updated on 18/Nov/20

Wow now i understand ! thank sir....

$$\mathrm{Wow}\:\mathrm{now}\:\mathrm{i}\:\mathrm{understand}\:!\:\mathrm{thank}\:\mathrm{sir}.... \\ $$

Answered by MJS_new last updated on 18/Nov/20

ac^2 (a+b)+a^2 b(b+c)+b^2 c(c+a)−       −(ab^2 (c+a)+bc^2 (a+b)+a^2 c(b+c))=  =a^2 c^2 +abc^2 +a^2 b^2 +a^2 bc+b^2 c^2 +ab^2 c−       −(ab^2 c+a^2 b^2 +abc^2 +b^2 c^2 +a^2 bc+a^2 c^2 )=0

$${ac}^{\mathrm{2}} \left({a}+{b}\right)+{a}^{\mathrm{2}} {b}\left({b}+{c}\right)+{b}^{\mathrm{2}} {c}\left({c}+{a}\right)− \\ $$$$\:\:\:\:\:−\left({ab}^{\mathrm{2}} \left({c}+{a}\right)+{bc}^{\mathrm{2}} \left({a}+{b}\right)+{a}^{\mathrm{2}} {c}\left({b}+{c}\right)\right)= \\ $$$$={a}^{\mathrm{2}} {c}^{\mathrm{2}} +{abc}^{\mathrm{2}} +{a}^{\mathrm{2}} {b}^{\mathrm{2}} +{a}^{\mathrm{2}} {bc}+{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{ab}^{\mathrm{2}} {c}− \\ $$$$\:\:\:\:\:−\left({ab}^{\mathrm{2}} {c}+{a}^{\mathrm{2}} {b}^{\mathrm{2}} +{abc}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{a}^{\mathrm{2}} {bc}+{a}^{\mathrm{2}} {c}^{\mathrm{2}} \right)=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com