Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 156761 by gsk2684 last updated on 15/Oct/21

prove that  ∫((a + b sin x)/((b + a sin x)^2 ))dx=((−cos x)/(b + a sin x))

$${prove}\:{that} \\ $$$$\int\frac{{a}\:+\:{b}\:\mathrm{sin}\:{x}}{\left({b}\:+\:{a}\:\mathrm{sin}\:{x}\right)^{\mathrm{2}} }{dx}=\frac{−\mathrm{cos}\:{x}}{{b}\:+\:{a}\:\mathrm{sin}\:{x}} \\ $$

Answered by cortano last updated on 15/Oct/21

 (d/dx)∫((a+bsin x)/((b+asin x)^2 )) dx=(d/dx)(((−cos x)/(b+asin x)))   ((a+bsin x)/((b+asin x)^2 ))=((sin x(b+asin x)+cos x(acos x))/((b+asin x)^2 ))                       =((bsin x+asin^2 x+acos^2 x)/((b+asin x)^2 ))           =((a+bsin x)/((b+asin x)^2 )) .

$$\:\frac{\mathrm{d}}{\mathrm{dx}}\int\frac{\mathrm{a}+\mathrm{bsin}\:\mathrm{x}}{\left(\mathrm{b}+\mathrm{asin}\:\mathrm{x}\right)^{\mathrm{2}} }\:\mathrm{dx}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{−\mathrm{cos}\:\mathrm{x}}{\mathrm{b}+\mathrm{asin}\:\mathrm{x}}\right) \\ $$$$\:\frac{\mathrm{a}+\mathrm{bsin}\:\mathrm{x}}{\left(\mathrm{b}+\mathrm{asin}\:\mathrm{x}\right)^{\mathrm{2}} }=\frac{\mathrm{sin}\:\mathrm{x}\left(\mathrm{b}+\mathrm{asin}\:\mathrm{x}\right)+\mathrm{cos}\:\mathrm{x}\left(\mathrm{acos}\:\mathrm{x}\right)}{\left(\mathrm{b}+\mathrm{asin}\:\mathrm{x}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{bsin}\:\mathrm{x}+\mathrm{asin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{acos}\:^{\mathrm{2}} \mathrm{x}}{\left(\mathrm{b}+\mathrm{asin}\:\mathrm{x}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{\mathrm{a}+\mathrm{bsin}\:\mathrm{x}}{\left(\mathrm{b}+\mathrm{asin}\:\mathrm{x}\right)^{\mathrm{2}} }\:. \\ $$

Commented by gsk2684 last updated on 15/Oct/21

result is verified. good

$${result}\:{is}\:{verified}.\:{good} \\ $$

Answered by puissant last updated on 15/Oct/21

D = ∫((a+bsinx)/((b+asinx)^2 ))dx = ∫(((a+bsinx))/((b+asinx)^2 ))•((sec^2 x)/(sec^2 x))dx  =∫((a sec^2 x+b tanx secx)/((b secx+a tanx)^2 ))dx  u=b secx+a tanx → du=(b secx tanx+a sec^2 x)dx  ⇒ D = ∫(dt/t^2 ) = ((−1)/t)+C..  ⇒ D = ((−1)/(b secx+a tanx))+C  ⇒ D = ((−1)/((b/(cosx))+((a sinx)/(cosx))))+C = ((−cosx)/(b+asinx)) +C                     ∴∵  D = ((−cosx)/(b+a sinx))+C..

$${D}\:=\:\int\frac{{a}+{bsinx}}{\left({b}+{asinx}\right)^{\mathrm{2}} }{dx}\:=\:\int\frac{\left({a}+{bsinx}\right)}{\left({b}+{asinx}\right)^{\mathrm{2}} }\bullet\frac{{sec}^{\mathrm{2}} {x}}{{sec}^{\mathrm{2}} {x}}{dx} \\ $$$$=\int\frac{{a}\:{sec}^{\mathrm{2}} {x}+{b}\:{tanx}\:{secx}}{\left({b}\:{secx}+{a}\:{tanx}\right)^{\mathrm{2}} }{dx} \\ $$$${u}={b}\:{secx}+{a}\:{tanx}\:\rightarrow\:{du}=\left({b}\:{secx}\:{tanx}+{a}\:{sec}^{\mathrm{2}} {x}\right){dx} \\ $$$$\Rightarrow\:{D}\:=\:\int\frac{{dt}}{{t}^{\mathrm{2}} }\:=\:\frac{−\mathrm{1}}{{t}}+{C}.. \\ $$$$\Rightarrow\:{D}\:=\:\frac{−\mathrm{1}}{{b}\:{secx}+{a}\:{tanx}}+{C} \\ $$$$\Rightarrow\:{D}\:=\:\frac{−\mathrm{1}}{\frac{{b}}{{cosx}}+\frac{{a}\:{sinx}}{{cosx}}}+{C}\:=\:\frac{−{cosx}}{{b}+{asinx}}\:+{C} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\therefore\because\:\:{D}\:=\:\frac{−{cosx}}{{b}+{a}\:{sinx}}+{C}.. \\ $$

Commented by gsk2684 last updated on 15/Oct/21

thank you

$${thank}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com