Question Number 116078 by Study last updated on 30/Sep/20 | ||
![]() | ||
$${prove}\:{that}\:\:\:{Fr}=\frac{{v}^{\mathrm{2}} }{{gh}}\:\:\:\:{froude}\:{numer} \\ $$ | ||
Answered by MrGaster last updated on 06/Jan/25 | ||
![]() | ||
$${F}_{{r}} =\frac{{v}^{\mathrm{2}} }{{gh}}\left({froude}\:{numer}\right) \\ $$$$\mathrm{Let}\:{v}\:\mathrm{be}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{the}\:\mathrm{object},{g}\:\mathrm{be}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{due}\:\mathrm{to}\:\mathrm{gravity},\mathrm{and}\:{h}\:\mathrm{be}\:\mathrm{the}\:\mathrm{characteristic}\:\mathrm{length} \\ $$$$\mathrm{From}\:\mathrm{dimensional}\:\mathrm{analysis}: \\ $$$$\mid{Fr}\mid=\frac{\mid{v}\mid^{\mathrm{2}} }{\mid{g}\mid\mid{h}\mid} \\ $$$$\mid{v}\mid=\frac{{L}}{{T}},\left[{g}\right]=\frac{{L}}{{T}^{\mathrm{2}} },\left[{h}\right]={L} \\ $$$$\left[{Fr}\right]=\frac{\left(\frac{{L}}{{T}}\right)}{\frac{{L}}{{T}^{\mathrm{2}} }\centerdot{L}}=\frac{\frac{{L}^{\mathrm{2}} }{{T}^{\mathrm{2}} }}{\frac{{L}^{\mathrm{2}} }{{T}^{\mathrm{2}} }}=\mathrm{1} \\ $$$$\mathrm{Thus}\:\mathrm{the}\:\mathrm{Froude}\:\mathrm{number}\:\mathrm{isidimensonless}. \\ $$$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{forces}\:\mathrm{acting}\:\mathrm{on}\:\mathrm{thejobect}: \\ $$$$\mathrm{Gravitational}\:\mathrm{force}\:{F}_{{G}} \propto\rho{gL}^{\mathrm{3}} \\ $$$$\mathrm{The}\:\mathrm{Froude}\:\mathrm{number}\:\mathrm{is}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{ofn} \\ $$$$\mathrm{iertial}\:\mathrm{force}\:\mathrm{to}\:\mathrm{gravitational}\:\mathrm{force}: \\ $$$${F}_{{r}} =\frac{{F}_{\mathrm{1}} }{{F}_{{G}} }=\frac{\rho{v}^{\mathrm{2}} {L}^{\mathrm{2}} }{\rho{gL}^{\mathrm{3}} }=\frac{{v}^{\mathrm{2}} }{{gL}} \\ $$$$\mathrm{Therefore}\:\mathrm{it}\:\mathrm{is}\:\mathrm{proven}\:\mathrm{that}\:{F}_{{r}} =\frac{{v}^{\mathrm{2}} }{{hh}}. \\ $$ | ||