Question and Answers Forum

All Questions      Topic List

Moderm Physics Questions

Previous in All Question      Next in All Question      

Previous in Moderm Physics      Next in Moderm Physics      

Question Number 116078 by Study last updated on 30/Sep/20

prove that   Fr=(v^2 /(gh))    froude numer

$${prove}\:{that}\:\:\:{Fr}=\frac{{v}^{\mathrm{2}} }{{gh}}\:\:\:\:{froude}\:{numer} \\ $$

Answered by MrGaster last updated on 06/Jan/25

F_r =(v^2 /(gh))(froude numer)  Let v be the velocity of the object,g be the acceleration due to gravity,and h be the characteristic length  From dimensional analysis:  ∣Fr∣=((∣v∣^2 )/(∣g∣∣h∣))  ∣v∣=(L/T),[g]=(L/T^2 ),[h]=L  [Fr]=((((L/T)))/((L/T^2 )∙L))=((L^2 /T^2 )/(L^2 /T^2 ))=1  Thus the Froude number isidimensonless.  Consider the forces acting on thejobect:  Gravitational force F_G ∝ρgL^3   The Froude number is the ratio ofn  iertial force to gravitational force:  F_r =(F_1 /F_G )=((ρv^2 L^2 )/(ρgL^3 ))=(v^2 /(gL))  Therefore it is proven that F_r =(v^2 /(hh)).

$${F}_{{r}} =\frac{{v}^{\mathrm{2}} }{{gh}}\left({froude}\:{numer}\right) \\ $$$$\mathrm{Let}\:{v}\:\mathrm{be}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{the}\:\mathrm{object},{g}\:\mathrm{be}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{due}\:\mathrm{to}\:\mathrm{gravity},\mathrm{and}\:{h}\:\mathrm{be}\:\mathrm{the}\:\mathrm{characteristic}\:\mathrm{length} \\ $$$$\mathrm{From}\:\mathrm{dimensional}\:\mathrm{analysis}: \\ $$$$\mid{Fr}\mid=\frac{\mid{v}\mid^{\mathrm{2}} }{\mid{g}\mid\mid{h}\mid} \\ $$$$\mid{v}\mid=\frac{{L}}{{T}},\left[{g}\right]=\frac{{L}}{{T}^{\mathrm{2}} },\left[{h}\right]={L} \\ $$$$\left[{Fr}\right]=\frac{\left(\frac{{L}}{{T}}\right)}{\frac{{L}}{{T}^{\mathrm{2}} }\centerdot{L}}=\frac{\frac{{L}^{\mathrm{2}} }{{T}^{\mathrm{2}} }}{\frac{{L}^{\mathrm{2}} }{{T}^{\mathrm{2}} }}=\mathrm{1} \\ $$$$\mathrm{Thus}\:\mathrm{the}\:\mathrm{Froude}\:\mathrm{number}\:\mathrm{isidimensonless}. \\ $$$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{forces}\:\mathrm{acting}\:\mathrm{on}\:\mathrm{thejobect}: \\ $$$$\mathrm{Gravitational}\:\mathrm{force}\:{F}_{{G}} \propto\rho{gL}^{\mathrm{3}} \\ $$$$\mathrm{The}\:\mathrm{Froude}\:\mathrm{number}\:\mathrm{is}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{ofn} \\ $$$$\mathrm{iertial}\:\mathrm{force}\:\mathrm{to}\:\mathrm{gravitational}\:\mathrm{force}: \\ $$$${F}_{{r}} =\frac{{F}_{\mathrm{1}} }{{F}_{{G}} }=\frac{\rho{v}^{\mathrm{2}} {L}^{\mathrm{2}} }{\rho{gL}^{\mathrm{3}} }=\frac{{v}^{\mathrm{2}} }{{gL}} \\ $$$$\mathrm{Therefore}\:\mathrm{it}\:\mathrm{is}\:\mathrm{proven}\:\mathrm{that}\:{F}_{{r}} =\frac{{v}^{\mathrm{2}} }{{hh}}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com