Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 44480 by peter frank last updated on 29/Sep/18

prove that  ((9π)/(8  ))−(9/4)sin^(−1) (1/3)=(9/4)sin^(−1) ((2(√2))/3)

$${prove}\:{that}\:\:\frac{\mathrm{9}\pi}{\mathrm{8}\:\:}−\frac{\mathrm{9}}{\mathrm{4}}\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{3}}=\frac{\mathrm{9}}{\mathrm{4}}\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$

Answered by math1967 last updated on 30/Sep/18

L.H.S=(9/4)((π/2)−sin^(−1) (1/3))  =(9/4)(cos^(−1) (1/3))       [∵sin^(−1) x+cos^(−1) x=(π/2)]  =(9/4)sin^(−1) ((√(1−((1/3))^2 )))  =(9/4)sin^(−1) ((2(√2))/3)=R.H.S proved

$${L}.{H}.{S}=\frac{\mathrm{9}}{\mathrm{4}}\left(\frac{\pi}{\mathrm{2}}−\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$=\frac{\mathrm{9}}{\mathrm{4}}\left(\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{3}}\right)\:\:\:\:\:\:\:\left[\because\mathrm{sin}^{−\mathrm{1}} {x}+\mathrm{cos}^{−\mathrm{1}} {x}=\frac{\pi}{\mathrm{2}}\right] \\ $$$$=\frac{\mathrm{9}}{\mathrm{4}}\mathrm{sin}^{−\mathrm{1}} \left(\sqrt{\mathrm{1}−\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} }\right) \\ $$$$=\frac{\mathrm{9}}{\mathrm{4}}\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}={R}.{H}.{S}\:{proved} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 29/Sep/18

(9/4)(sin^(−1) ((2(√2) )/3)+sin^(−1) (1/3))  (9/4)(tan^(−1) ((2(√2))/1)+tan^(−1) (1/(2(√2))))  (9/4)(tan^(−1) ((2(√2) +(1/(2(√2))))/(1−2(√2) ×(1/(2(√2))))))  (9/4)tan^(−1) (∞)  (9/4)×(π/2)=((9π)/8)  so ((9π)/8)−(9/4)sin^(−1) (((2(√2))/3))=(9/4)sin^(−1) ((1/3))   proved

$$\frac{\mathrm{9}}{\mathrm{4}}\left({sin}^{−\mathrm{1}} \frac{\mathrm{2}\sqrt{\mathrm{2}}\:}{\mathrm{3}}+{sin}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$\frac{\mathrm{9}}{\mathrm{4}}\left({tan}^{−\mathrm{1}} \frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{1}}+{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\right) \\ $$$$\frac{\mathrm{9}}{\mathrm{4}}\left({tan}^{−\mathrm{1}} \frac{\mathrm{2}\sqrt{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}}{\mathrm{1}−\mathrm{2}\sqrt{\mathrm{2}}\:×\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}}\right) \\ $$$$\frac{\mathrm{9}}{\mathrm{4}}{tan}^{−\mathrm{1}} \left(\infty\right) \\ $$$$\frac{\mathrm{9}}{\mathrm{4}}×\frac{\pi}{\mathrm{2}}=\frac{\mathrm{9}\pi}{\mathrm{8}} \\ $$$${so}\:\frac{\mathrm{9}\pi}{\mathrm{8}}−\frac{\mathrm{9}}{\mathrm{4}}{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}\right)=\frac{\mathrm{9}}{\mathrm{4}}{sin}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:\:\:{proved} \\ $$

Commented by peter frank last updated on 29/Sep/18

sir    ((9π)/8) ≠ sin^(−1) ((2(√2))/3)

$${sir}\:\:\:\:\frac{\mathrm{9}\pi}{\mathrm{8}}\:\neq\:\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 29/Sep/18

look the method of solve   given to prove a−b=c  i have prove a=b+c  if a=b+c   that means a−b=c  so before comment pls see the method of solve

$${look}\:{the}\:{method}\:{of}\:{solve}\: \\ $$$${given}\:{to}\:{prove}\:{a}−{b}={c} \\ $$$${i}\:{have}\:{prove}\:{a}={b}+{c} \\ $$$${if}\:{a}={b}+{c}\:\:\:{that}\:{means}\:{a}−{b}={c} \\ $$$${so}\:{before}\:{comment}\:{pls}\:{see}\:{the}\:{method}\:{of}\:{solve} \\ $$

Commented by peter frank last updated on 29/Sep/18

okay sir thank you now i understood

$${okay}\:{sir}\:{thank}\:{you}\:{now}\:{i}\:{understood} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 29/Sep/18

or method  to prove  ((9π)/8)−(9/4)sin^(−1) (((2(√2))/3))=(9/4)sin^(−1) ((1/3))  let k=(9/4)((π/2)−sin^(−1) (((2(√2))/3))  ((4k)/9)=(π/2)−sin^(−1) (((2(√2))/3))  sin(((4k)/9))=sin{(π/2)−sin^(−1) (((2(√2))/3))}  sin(((4k)/9))=cos({sin^(−1) (((2(√2))/3))}  sin(((4k)/9))=(1/3)  [reason  sinα=((2(√2))/3)   so cosα=(1/3)]  ((4k)/9)=sin^(−1) ((1/3))  k=(9/4)sin^(−1) ((1/3))   hence prlved...

$${or}\:{method} \\ $$$${to}\:{prove} \\ $$$$\frac{\mathrm{9}\pi}{\mathrm{8}}−\frac{\mathrm{9}}{\mathrm{4}}{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}\right)=\frac{\mathrm{9}}{\mathrm{4}}{sin}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$${let}\:{k}=\frac{\mathrm{9}}{\mathrm{4}}\left(\frac{\pi}{\mathrm{2}}−{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}\right)\right. \\ $$$$\frac{\mathrm{4}{k}}{\mathrm{9}}=\frac{\pi}{\mathrm{2}}−{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}\right) \\ $$$${sin}\left(\frac{\mathrm{4}{k}}{\mathrm{9}}\right)={sin}\left\{\frac{\pi}{\mathrm{2}}−{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}\right)\right\} \\ $$$${sin}\left(\frac{\mathrm{4}{k}}{\mathrm{9}}\right)={cos}\left(\left\{{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}\right)\right\}\right. \\ $$$${sin}\left(\frac{\mathrm{4}{k}}{\mathrm{9}}\right)=\frac{\mathrm{1}}{\mathrm{3}}\:\:\left[{reason}\:\:{sin}\alpha=\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}\:\:\:{so}\:{cos}\alpha=\frac{\mathrm{1}}{\mathrm{3}}\right] \\ $$$$\frac{\mathrm{4}{k}}{\mathrm{9}}={sin}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$${k}=\frac{\mathrm{9}}{\mathrm{4}}{sin}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:\:\:{hence}\:{prlved}... \\ $$

Commented by peter frank last updated on 29/Sep/18

very nice

$${very}\:{nice}\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com