Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 130846 by Eric002 last updated on 29/Jan/21

prove that  3sec^(−1) ((√2))−4csc^(−1) ((√2))+5cot^(−1) (2)=1.533

$${prove}\:{that} \\ $$$$\mathrm{3}{sec}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}\right)−\mathrm{4}{csc}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}\right)+\mathrm{5}{cot}^{−\mathrm{1}} \left(\mathrm{2}\right)=\mathrm{1}.\mathrm{533} \\ $$

Commented by MJS_new last updated on 30/Jan/21

we cannot prove this as it is not true

$$\mathrm{we}\:\mathrm{cannot}\:\mathrm{prove}\:\mathrm{this}\:\mathrm{as}\:\mathrm{it}\:\mathrm{is}\:\mathrm{not}\:\mathrm{true} \\ $$

Answered by benjo_mathlover last updated on 30/Jan/21

 3cos^(−1) ((1/( (√2))))−4sin^(−1) ((1/( (√2))))+5tan^(−1) ((1/2))=  ((3π)/4)−((4π)/4)+5tan^(−1) ((1/2))=−(π/4)+5tan^(−1) ((1/2))  5tan^(−1) ((1/2))  2.318238  −(π/4)+5tan^(−1) ((1/2))  1.53284

$$\:\mathrm{3cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)−\mathrm{4sin}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)+\mathrm{5tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)= \\ $$$$\frac{\mathrm{3}\pi}{\mathrm{4}}−\frac{\mathrm{4}\pi}{\mathrm{4}}+\mathrm{5tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)=−\frac{\pi}{\mathrm{4}}+\mathrm{5tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\mathrm{5tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\mathrm{2}.\mathrm{318238} \\ $$$$−\frac{\pi}{\mathrm{4}}+\mathrm{5tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\mathrm{1}.\mathrm{53284} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com