Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 166113 by mathls last updated on 13/Feb/22

prove that 1!=1

$${prove}\:{that}\:\mathrm{1}!=\mathrm{1} \\ $$

Commented by mathls last updated on 13/Feb/22

?

$$? \\ $$

Commented by MJS_new last updated on 14/Feb/22

there′s no proof.  we define ∀n∈N^★ : n!=Π_(j=1) ^n j  ⇒  1!=Π_(j=1) ^1 j=1  also there′s no proof for 0!=1  we define 0!=1 because it makes sense.

$$\mathrm{there}'\mathrm{s}\:\mathrm{no}\:\mathrm{proof}. \\ $$$$\mathrm{we}\:\mathrm{define}\:\forall{n}\in\mathbb{N}^{\bigstar} :\:{n}!=\underset{{j}=\mathrm{1}} {\overset{{n}} {\prod}}{j} \\ $$$$\Rightarrow \\ $$$$\mathrm{1}!=\underset{{j}=\mathrm{1}} {\overset{\mathrm{1}} {\prod}}{j}=\mathrm{1} \\ $$$$\mathrm{also}\:\mathrm{there}'\mathrm{s}\:\mathrm{no}\:\mathrm{proof}\:\mathrm{for}\:\mathrm{0}!=\mathrm{1} \\ $$$$\mathrm{we}\:\mathrm{define}\:\mathrm{0}!=\mathrm{1}\:\mathrm{because}\:\mathrm{it}\:\mathrm{makes}\:\mathrm{sense}. \\ $$

Answered by alephzero last updated on 14/Feb/22

n! = n ∙ (n−1)!  Let n = 2  ⇒ 2! = 2 ∙ 1!  ⇒ 2 = 2 ∙ 1!  ⇒ 1! = 1

$${n}!\:=\:{n}\:\centerdot\:\left({n}−\mathrm{1}\right)! \\ $$$$\mathrm{Let}\:{n}\:=\:\mathrm{2} \\ $$$$\Rightarrow\:\mathrm{2}!\:=\:\mathrm{2}\:\centerdot\:\mathrm{1}! \\ $$$$\Rightarrow\:\mathrm{2}\:=\:\mathrm{2}\:\centerdot\:\mathrm{1}! \\ $$$$\Rightarrow\:\mathrm{1}!\:=\:\mathrm{1} \\ $$

Answered by Mathspace last updated on 14/Feb/22

1!=Γ(2)=∫_0 ^∞ t^(2−1) e^(−t) dt  =∫_0 ^∞  t e^(−t) dt=[−te^(−t) ]_0 ^∞ +∫_0 ^∞  e^(−t) dt  =[−e^(−t) ]_0 ^∞ =1  0!=Γ(1)=∫_0 ^∞ t^(1−1)  e^(−t) dt  =∫_0 ^∞ e^(−t) dt=[−e^(−t) ]_0 ^∞ =1

$$\mathrm{1}!=\Gamma\left(\mathrm{2}\right)=\int_{\mathrm{0}} ^{\infty} {t}^{\mathrm{2}−\mathrm{1}} {e}^{−{t}} {dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:{t}\:{e}^{−{t}} {dt}=\left[−{te}^{−{t}} \right]_{\mathrm{0}} ^{\infty} +\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}} {dt} \\ $$$$=\left[−{e}^{−{t}} \right]_{\mathrm{0}} ^{\infty} =\mathrm{1} \\ $$$$\mathrm{0}!=\Gamma\left(\mathrm{1}\right)=\int_{\mathrm{0}} ^{\infty} {t}^{\mathrm{1}−\mathrm{1}} \:{e}^{−{t}} {dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} {dt}=\left[−{e}^{−{t}} \right]_{\mathrm{0}} ^{\infty} =\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com