Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 139912 by mnjuly1970 last updated on 02/May/21

       prove that::          𝛀 :=∫_0 ^( (1/2)) (dx/( (√(1+x^2 )))) =log(ϕ)          ϕ:=golden ratio ...

$$ \\ $$$$\:\:\:\:\:{prove}\:{that}::\: \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\Omega}\::=\int_{\mathrm{0}} ^{\:\frac{\mathrm{1}}{\mathrm{2}}} \frac{{dx}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:={log}\left(\varphi\right) \\ $$$$\:\:\:\:\:\:\:\:\varphi:={golden}\:{ratio}\:... \\ $$$$ \\ $$

Answered by qaz last updated on 02/May/21

∫_0 ^(1/2) (dx/( (√(1+x^2 ))))=ln(x+(√(1+x^2 )))∣_0 ^(1/2) =ln(((1+(√5))/2))

$$\int_{\mathrm{0}} ^{\mathrm{1}/\mathrm{2}} \frac{{dx}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}={ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)\mid_{\mathrm{0}} ^{\mathrm{1}/\mathrm{2}} ={ln}\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right) \\ $$

Commented by mnjuly1970 last updated on 02/May/21

  very nice ...

$$\:\:{very}\:{nice}\:... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com