Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 192062 by mehdee42 last updated on 07/May/23

prove it :      times_n   ;   (√(4+(√(4+(√(4+...+(√4)))))  )) < 3

$${prove}\:{it}\::\: \\ $$$$\:\:\:{times\_n}\:\:\:;\:\:\:\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+...+\sqrt{\mathrm{4}}}}\:\:}\:<\:\mathrm{3} \\ $$

Commented by ajfour last updated on 08/May/23

but 4> 3      how can this be...  really no use arguing!

$${but}\:\mathrm{4}>\:\mathrm{3}\:\:\:\: \\ $$$${how}\:{can}\:{this}\:{be}... \\ $$$${really}\:{no}\:{use}\:{arguing}! \\ $$

Commented by ajfour last updated on 08/May/23

sometimes it just really dont make no sense et al.

Commented by mehdee42 last updated on 08/May/23

pay attention to question     that is ((√4)<3 ) right , not what you wrote (4>3)

$${pay}\:{attention}\:{to}\:{question}\:\:\: \\ $$$${that}\:{is}\:\left(\sqrt{\mathrm{4}}<\mathrm{3}\:\right)\:{right}\:,\:{not}\:{what}\:{you}\:{wrote}\:\left(\mathrm{4}>\mathrm{3}\right) \\ $$

Answered by Frix last updated on 07/May/23

x=(√(4+(√(4+(√(4+...))))))>0  x=(√(4+x))  x^2 −x−4=0  x=((1+(√(17)))/2)  ((1+(√(17)))/2)<3  1+(√(17))<6  (√(17))<5  17<25 true

$${x}=\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+...}}}>\mathrm{0} \\ $$$${x}=\sqrt{\mathrm{4}+{x}} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{4}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{2}} \\ $$$$\frac{\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{2}}<\mathrm{3} \\ $$$$\mathrm{1}+\sqrt{\mathrm{17}}<\mathrm{6} \\ $$$$\sqrt{\mathrm{17}}<\mathrm{5} \\ $$$$\mathrm{17}<\mathrm{25}\:\mathrm{true} \\ $$

Commented by mehdee42 last updated on 07/May/23

pay  attention :  (√(4+(√(4+(√(4+....)))))) ≠ (√(4+(√(4+(√(4+...(√4)))))))   ⇒ if   x=(√(4+(√(4+(√(4+...(√4)))))))⇏x^2 =4+x  the expression on the left contains the infinitive of the   sentence .while the number of  sentenes   in thr right experession is finit.

$${pay}\:\:{attention}\:: \\ $$$$\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+....}}}\:\neq\:\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+...\sqrt{\mathrm{4}}}}}\: \\ $$$$\Rightarrow\:{if}\:\:\:{x}=\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+...\sqrt{\mathrm{4}}}}}\nRightarrow{x}^{\mathrm{2}} =\mathrm{4}+{x} \\ $$$${the}\:{expression}\:{on}\:{the}\:{left}\:{contains}\:{the}\:{infinitive}\:{of}\:{the}\: \\ $$$${sentence}\:.{while}\:{the}\:{number}\:{of}\:\:{sentenes}\: \\ $$$${in}\:{thr}\:{right}\:{experession}\:{is}\:{finit}. \\ $$

Commented by Frix last updated on 07/May/23

x=((1+(√(17)))/2)  (√4)<(√(4+(√4)))<(√(4+(√(4+(√4)))))<...<x<3

$${x}=\frac{\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{2}} \\ $$$$\sqrt{\mathrm{4}}<\sqrt{\mathrm{4}+\sqrt{\mathrm{4}}}<\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+\sqrt{\mathrm{4}}}}<...<{x}<\mathrm{3} \\ $$

Commented by mehdee42 last updated on 07/May/23

why  “...< x <3 ” ?!

$${why}\:\:``...<\:{x}\:<\mathrm{3}\:''\:?! \\ $$

Commented by deleteduser1 last updated on 07/May/23

Let 4_n =(√(4+(√(4+(√(4+...+(√4))))))) (where 4 appears n  times)  4_n <4_p  when n<p...(i)  This is true since 4_n =(√(4+z)) and z increases as  n increases.  since 4_∞ <3,(i)⇒4_n <4_∞ <3  Hence,we have shown that for all n,4_n <3.

$${Let}\:\mathrm{4}_{{n}} =\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+...+\sqrt{\mathrm{4}}}}}\:\left({where}\:\mathrm{4}\:{appears}\:{n}\right. \\ $$$$\left.{times}\right) \\ $$$$\mathrm{4}_{{n}} <\mathrm{4}_{{p}} \:{when}\:{n}<{p}...\left({i}\right) \\ $$$${This}\:{is}\:{true}\:{since}\:\mathrm{4}_{{n}} =\sqrt{\mathrm{4}+{z}}\:{and}\:{z}\:{increases}\:{as} \\ $$$${n}\:{increases}. \\ $$$${since}\:\mathrm{4}_{\infty} <\mathrm{3},\left({i}\right)\Rightarrow\mathrm{4}_{{n}} <\mathrm{4}_{\infty} <\mathrm{3} \\ $$$${Hence},{we}\:{have}\:{shown}\:{that}\:{for}\:{all}\:{n},\mathrm{4}_{{n}} <\mathrm{3}. \\ $$

Commented by mehdee42 last updated on 07/May/23

sir  why  4_n <4_∞ <3  ??

$${sir} \\ $$$${why}\:\:\mathrm{4}_{{n}} <\mathrm{4}_{\infty} <\mathrm{3}\:\:?? \\ $$

Commented by mehdee42 last updated on 07/May/23

it can be proven by a very simple   mahematical induction metod  good luck

$${it}\:{can}\:{be}\:{proven}\:{by}\:{a}\:{very}\:{simple}\: \\ $$$${mahematical}\:{induction}\:{metod} \\ $$$${good}\:{luck} \\ $$

Answered by mehdee42 last updated on 08/May/23

answer to question number   let : p_n = n_ termes   (√(4+(√(4+(√(4+...+(√4))))) ))<3   p_1  =(√4)=2<3 ✓      i.s  p_k  = (k _ termes ) (√(4+(√(4+(√(4+....+(√4)))))))<3    i.h   p_(k+1)  =(k+1 _ termes)   (√(4+(√(4+(√(4+...+(√4))))))) <3   ?  i.r  p_(k+1) ^2  =4+(k_termes) (√(4+(√(4+(√(4+...+(√4))))) ))<4+3=7   ⇒ p_(k+1) <(√7)<3 ✓

$${answer}\:{to}\:{question}\:{number}\: \\ $$$${let}\::\:{p}_{{n}} =\:{n\_}\:{termes}\:\:\:\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+...+\sqrt{\mathrm{4}}}}\:}<\mathrm{3} \\ $$$$\:{p}_{\mathrm{1}} \:=\sqrt{\mathrm{4}}=\mathrm{2}<\mathrm{3}\:\checkmark\:\:\:\:\:\:{i}.{s} \\ $$$${p}_{{k}} \:=\:\left({k}\:\_\:{termes}\:\right)\:\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+....+\sqrt{\mathrm{4}}}}}<\mathrm{3}\:\:\:\:{i}.{h}\: \\ $$$${p}_{{k}+\mathrm{1}} \:=\left({k}+\mathrm{1}\:\_\:{termes}\right)\:\:\:\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+...+\sqrt{\mathrm{4}}}}}\:<\mathrm{3}\:\:\:?\:\:{i}.{r} \\ $$$${p}_{{k}+\mathrm{1}} ^{\mathrm{2}} \:=\mathrm{4}+\left({k\_termes}\right)\:\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+...+\sqrt{\mathrm{4}}}}\:}<\mathrm{4}+\mathrm{3}=\mathrm{7}\: \\ $$$$\Rightarrow\:{p}_{{k}+\mathrm{1}} <\sqrt{\mathrm{7}}<\mathrm{3}\:\checkmark \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com