Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 117903 by aurpeyz last updated on 14/Oct/20

prove by mathematical induction  that n(n+1)(n+2) is an integer   multiple of 6

$${prove}\:{by}\:{mathematical}\:{induction} \\ $$$${that}\:{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\:{is}\:{an}\:{integer}\: \\ $$$${multiple}\:{of}\:\mathrm{6} \\ $$

Answered by mindispower last updated on 14/Oct/20

(n+1)(n+2)(n+3)  =n(n+1)(n+2)+3(n+1)(n+2)  =n(n+1)(n+2)+3n^2 +9n+6  =n(n+1)(n+2)+3n(n+1)+6(n+1)  p_m =m(m+1)(m+2)  2∣n(n+1) “n=2k tru ,n=2k+1⇒n+1=2(k+1) true”  for n=0 we hve 6∣0 true  supose ∀n  6∣P_n  ;6∣P_(n+1)   P_(n+1) =(n+1)(n+2)(n+3)=n(n+1)(n+2)+3n(n+1)+6  p_n =n(n+1)(n+2)=6k by hypothes  n(n+1)=2a  ⇒p_(n+1) =6(k+a+1)⇒6∣p_(n+1)

$$\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\left({n}+\mathrm{3}\right) \\ $$$$={n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)+\mathrm{3}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right) \\ $$$$={n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)+\mathrm{3}{n}^{\mathrm{2}} +\mathrm{9}{n}+\mathrm{6} \\ $$$$={n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)+\mathrm{3}{n}\left({n}+\mathrm{1}\right)+\mathrm{6}\left({n}+\mathrm{1}\right) \\ $$$${p}_{{m}} ={m}\left({m}+\mathrm{1}\right)\left({m}+\mathrm{2}\right) \\ $$$$\mathrm{2}\mid{n}\left({n}+\mathrm{1}\right)\:``{n}=\mathrm{2}{k}\:{tru}\:,{n}=\mathrm{2}{k}+\mathrm{1}\Rightarrow{n}+\mathrm{1}=\mathrm{2}\left({k}+\mathrm{1}\right)\:{true}'' \\ $$$${for}\:{n}=\mathrm{0}\:{we}\:{hve}\:\mathrm{6}\mid\mathrm{0}\:{true} \\ $$$${supose}\:\forall{n}\:\:\mathrm{6}\mid{P}_{{n}} \:;\mathrm{6}\mid{P}_{{n}+\mathrm{1}} \\ $$$${P}_{{n}+\mathrm{1}} =\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\left({n}+\mathrm{3}\right)={n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)+\mathrm{3}{n}\left({n}+\mathrm{1}\right)+\mathrm{6} \\ $$$${p}_{{n}} ={n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)=\mathrm{6}{k}\:{by}\:{hypothes} \\ $$$${n}\left({n}+\mathrm{1}\right)=\mathrm{2}{a} \\ $$$$\Rightarrow{p}_{{n}+\mathrm{1}} =\mathrm{6}\left({k}+{a}+\mathrm{1}\right)\Rightarrow\mathrm{6}\mid{p}_{{n}+\mathrm{1}} \\ $$$$ \\ $$

Answered by 1549442205PVT last updated on 14/Oct/20

Prove n(n+1)(n+2) is multiply of 6  ∀n∈N,n≥1by mathematical inuction  i)For n=1⇒A_1 =1.2.3=6⋮6⇒State is true  ii)Suppose State was true ∀n≤k  that means A_k =k(k+1)(k+2)⋮6  iii)We will prove that A_(k+1) ⋮6  Indeed,A_(k+1) =(k+1)(k+2)(k+3)  =k(k+1)(k+2)+3(k+1)(k+2)  =A_k +3(k^2 +3k+2)=A_k +3k(k+1)  +6(k+1)⋮6 Since A_k ⋮6,6(k+1)⋮6  3k(k+1)⋮6(by in two sequence numbers  always have one even number )  Thus,State is also for n=k+1,so  by mathimatical  induction principle  State is true ∀n∈N^∗ (q.e.d)

$$\mathrm{Prove}\:\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{2}\right)\:\mathrm{is}\:\mathrm{multiply}\:\mathrm{of}\:\mathrm{6} \\ $$$$\forall\mathrm{n}\in\mathrm{N},\mathrm{n}\geqslant\mathrm{1by}\:\mathrm{mathematical}\:\mathrm{inuction} \\ $$$$\left.\mathrm{i}\right)\mathrm{For}\:\mathrm{n}=\mathrm{1}\Rightarrow\mathrm{A}_{\mathrm{1}} =\mathrm{1}.\mathrm{2}.\mathrm{3}=\mathrm{6}\vdots\mathrm{6}\Rightarrow\mathrm{State}\:\mathrm{is}\:\mathrm{true} \\ $$$$\left.\mathrm{ii}\right)\mathrm{Suppose}\:\mathrm{State}\:\mathrm{was}\:\mathrm{true}\:\forall\mathrm{n}\leqslant\mathrm{k} \\ $$$$\mathrm{that}\:\mathrm{means}\:\mathrm{A}_{\mathrm{k}} =\mathrm{k}\left(\mathrm{k}+\mathrm{1}\right)\left(\mathrm{k}+\mathrm{2}\right)\vdots\mathrm{6} \\ $$$$\left.\mathrm{iii}\right)\mathrm{We}\:\mathrm{will}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{A}_{\mathrm{k}+\mathrm{1}} \vdots\mathrm{6} \\ $$$$\mathrm{Indeed},\mathrm{A}_{\mathrm{k}+\mathrm{1}} =\left(\mathrm{k}+\mathrm{1}\right)\left(\mathrm{k}+\mathrm{2}\right)\left(\mathrm{k}+\mathrm{3}\right) \\ $$$$=\mathrm{k}\left(\mathrm{k}+\mathrm{1}\right)\left(\mathrm{k}+\mathrm{2}\right)+\mathrm{3}\left(\mathrm{k}+\mathrm{1}\right)\left(\mathrm{k}+\mathrm{2}\right) \\ $$$$=\mathrm{A}_{\mathrm{k}} +\mathrm{3}\left(\mathrm{k}^{\mathrm{2}} +\mathrm{3k}+\mathrm{2}\right)=\mathrm{A}_{\mathrm{k}} +\mathrm{3k}\left(\mathrm{k}+\mathrm{1}\right) \\ $$$$+\mathrm{6}\left(\mathrm{k}+\mathrm{1}\right)\vdots\mathrm{6}\:\mathrm{Since}\:\mathrm{A}_{\mathrm{k}} \vdots\mathrm{6},\mathrm{6}\left(\mathrm{k}+\mathrm{1}\right)\vdots\mathrm{6} \\ $$$$\mathrm{3k}\left(\mathrm{k}+\mathrm{1}\right)\vdots\mathrm{6}\left(\mathrm{by}\:\mathrm{in}\:\mathrm{two}\:\mathrm{sequence}\:\mathrm{numbers}\right. \\ $$$$\left.\mathrm{always}\:\mathrm{have}\:\mathrm{one}\:\mathrm{even}\:\mathrm{number}\:\right) \\ $$$$\mathrm{Thus},\mathrm{State}\:\mathrm{is}\:\mathrm{also}\:\mathrm{for}\:\mathrm{n}=\mathrm{k}+\mathrm{1},\mathrm{so} \\ $$$$\mathrm{by}\:\mathrm{mathimatical}\:\:\mathrm{induction}\:\mathrm{principle} \\ $$$$\mathrm{State}\:\mathrm{is}\:\mathrm{true}\:\forall\mathrm{n}\in\mathrm{N}^{\ast} \left(\boldsymbol{\mathrm{q}}.\boldsymbol{\mathrm{e}}.\boldsymbol{\mathrm{d}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com