Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 66102 by Rio Michael last updated on 09/Aug/19

prove by mathematical induction that  4^n +3^n +2 is a multiple of 3 for all   positive integral values of n.

$${prove}\:{by}\:{mathematical}\:{induction}\:{that}\:\:\mathrm{4}^{{n}} +\mathrm{3}^{{n}} +\mathrm{2}\:{is}\:{a}\:{multiple}\:{of}\:\mathrm{3}\:{for}\:{all}\: \\ $$$${positive}\:{integral}\:{values}\:{of}\:{n}. \\ $$

Commented by mathmax by abdo last updated on 09/Aug/19

let A_n =4^n  +3^n  +2  A_1 =9 and  9 multiple of 3  reltion true let suppose A_n  multiple  of 3 ⇒ A_n =3k   k integr on A_(n+1) =4^(n+1)  +3^(n+1)  +2  =4.(A_n −3^n −2)+3^(n+1)  +2 =4A_n −4.3^n  −8 +3^(n+1)  +2  =4 A_n −3^n  −6 =4(3k)−3^n −6 =3{4k−3^(n−1) −2}=3k^′  ⇒  A_(n+1) is multiple of 3  the relation is true for (n+1).

$${let}\:{A}_{{n}} =\mathrm{4}^{{n}} \:+\mathrm{3}^{{n}} \:+\mathrm{2} \\ $$$${A}_{\mathrm{1}} =\mathrm{9}\:{and}\:\:\mathrm{9}\:{multiple}\:{of}\:\mathrm{3}\:\:{reltion}\:{true}\:{let}\:{suppose}\:{A}_{{n}} \:{multiple} \\ $$$${of}\:\mathrm{3}\:\Rightarrow\:{A}_{{n}} =\mathrm{3}{k}\:\:\:{k}\:{integr}\:{on}\:{A}_{{n}+\mathrm{1}} =\mathrm{4}^{{n}+\mathrm{1}} \:+\mathrm{3}^{{n}+\mathrm{1}} \:+\mathrm{2} \\ $$$$=\mathrm{4}.\left({A}_{{n}} −\mathrm{3}^{{n}} −\mathrm{2}\right)+\mathrm{3}^{{n}+\mathrm{1}} \:+\mathrm{2}\:=\mathrm{4}{A}_{{n}} −\mathrm{4}.\mathrm{3}^{{n}} \:−\mathrm{8}\:+\mathrm{3}^{{n}+\mathrm{1}} \:+\mathrm{2} \\ $$$$=\mathrm{4}\:{A}_{{n}} −\mathrm{3}^{{n}} \:−\mathrm{6}\:=\mathrm{4}\left(\mathrm{3}{k}\right)−\mathrm{3}^{{n}} −\mathrm{6}\:=\mathrm{3}\left\{\mathrm{4}{k}−\mathrm{3}^{{n}−\mathrm{1}} −\mathrm{2}\right\}=\mathrm{3}{k}^{'} \:\Rightarrow \\ $$$${A}_{{n}+\mathrm{1}} {is}\:{multiple}\:{of}\:\mathrm{3}\:\:{the}\:{relation}\:{is}\:{true}\:{for}\:\left({n}+\mathrm{1}\right). \\ $$

Commented by Prithwish sen last updated on 11/Aug/19

you have to prove it for n=1 and 2 by putting   n=1 and n=2  then assume it is true for n=k   i.e 4^k + 3^k +2 is a multiple of 3   now for n=k+1  4^k .4+3^k .3+1=4(4^k +3^k +1) −(3^k +3)  ∵ this  is multiple of 3   ∴ it is proved for n=k+1

$$\mathrm{you}\:\mathrm{have}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{it}\:\mathrm{for}\:\mathrm{n}=\mathrm{1}\:\mathrm{and}\:\mathrm{2}\:\mathrm{by}\:\mathrm{putting}\: \\ $$$$\mathrm{n}=\mathrm{1}\:\mathrm{and}\:\mathrm{n}=\mathrm{2} \\ $$$$\mathrm{then}\:\mathrm{assume}\:\mathrm{it}\:\mathrm{is}\:\mathrm{true}\:\mathrm{for}\:\mathrm{n}=\mathrm{k}\: \\ $$$$\mathrm{i}.\mathrm{e}\:\mathrm{4}^{\mathrm{k}} +\:\mathrm{3}^{\mathrm{k}} +\mathrm{2}\:\mathrm{is}\:\mathrm{a}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{3}\: \\ $$$$\mathrm{now}\:\mathrm{for}\:\mathrm{n}=\mathrm{k}+\mathrm{1} \\ $$$$\mathrm{4}^{\mathrm{k}} .\mathrm{4}+\mathrm{3}^{\mathrm{k}} .\mathrm{3}+\mathrm{1}=\mathrm{4}\left(\mathrm{4}^{\mathrm{k}} +\mathrm{3}^{\mathrm{k}} +\mathrm{1}\right)\:−\left(\mathrm{3}^{\mathrm{k}} +\mathrm{3}\right) \\ $$$$\because\:\mathrm{this}\:\:\mathrm{is}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{3}\: \\ $$$$\therefore\:\mathrm{it}\:\mathrm{is}\:\mathrm{proved}\:\mathrm{for}\:\mathrm{n}=\mathrm{k}+\mathrm{1} \\ $$$$ \\ $$

Commented by Rio Michael last updated on 09/Aug/19

thanks

$${thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com