Question and Answers Forum

All Questions      Topic List

Operation Research Questions

Previous in All Question      Next in All Question      

Previous in Operation Research      Next in Operation Research      

Question Number 78333 by Lontum Hans last updated on 16/Jan/20

prove by contradiction that (√(2 )) is irrational.

$$\mathrm{prove}\:\mathrm{by}\:\mathrm{contradiction}\:\mathrm{that}\:\sqrt{\mathrm{2}\:}\:\mathrm{is}\:\mathrm{irrational}. \\ $$

Answered by MJS last updated on 16/Jan/20

(√2)∈Q∧(√2)>0 ⇒ (√2)=(p/q)  p, q ∈N∧gcd (p, q) =1 ⇔ p∤q∧q∤p  ((√2)=(p/q))^2   2=(p/q) ⇒ p=2q ⇒ q∣p but q∤p ⇒ (√2)∉Q

$$\sqrt{\mathrm{2}}\in\mathbb{Q}\wedge\sqrt{\mathrm{2}}>\mathrm{0}\:\Rightarrow\:\sqrt{\mathrm{2}}=\frac{{p}}{{q}} \\ $$$${p},\:{q}\:\in\mathbb{N}\wedge\mathrm{gcd}\:\left({p},\:{q}\right)\:=\mathrm{1}\:\Leftrightarrow\:{p}\nmid{q}\wedge{q}\nmid{p} \\ $$$$\left(\sqrt{\mathrm{2}}=\frac{{p}}{{q}}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}=\frac{{p}}{{q}}\:\Rightarrow\:{p}=\mathrm{2}{q}\:\Rightarrow\:{q}\mid{p}\:\mathrm{but}\:{q}\nmid{p}\:\Rightarrow\:\sqrt{\mathrm{2}}\notin\mathbb{Q} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com