Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 152345 by mnjuly1970 last updated on 27/Aug/21

      prove...       S =Σ_(n=1) ^∞ (1/) = (1/3) +((2π (√3))/(27)) ...■

$$ \\ $$$$\:\:\:\:{prove}... \\ $$$$\:\:\:\:\:\mathrm{S}\:=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:+\frac{\mathrm{2}\pi\:\sqrt{\mathrm{3}}}{\mathrm{27}}\:...\blacksquare \\ $$$$ \\ $$

Answered by Kamel last updated on 27/Aug/21

      prove...       S =Σ_(n=1) ^∞ (1/) = (1/3) +((2π (√3))/(27)) ...■        =Σ_(n=1) ^(+∞) ((nΓ(n+1)Γ(n))/(Γ(2n+1)))=Σ_(n=1) ^(+∞) n∫_0 ^1 t^(n−1) (1−t)^n dt     =∫_0 ^1 (d/dy)[Σ_(n=1) ^(+∞) y^n (1−t)^n ]_(y=t) dt=∫_0 ^1 ((1−t)/((1−t(1−t))^2 ))dt     =∫_0 ^1 (u/((u^2 −u+1)^2 ))du=∫_1 ^(+∞) (u/((u^2 −u+1)^2 ))du  S=(1/2)∫_0 ^(+∞) ((udu)/((u^2 −u+1)^2 ))     =(1/2)(d/da)[∫_0 ^(+∞) (du/((u^2 −au+1)))]_(a=1) =(1/2)(d/da)[(1/( (√(1−(a^2 /4)))))((π/2)+Arctan((a/( 2(√(1−(a^2 /4)))))))]_(a=1)      =(1/2)[ (2/(3(√3)))((π/2)+Arctan((1/( (√3)))))−(1/( 2(√3)))(((((−1)/( (√3)))−(√3))/4))]    =((2π)/( 9(√3)))+(1/3)=(1/3)+((2π(√3))/(27))

$$ \\ $$$$\:\:\:\:{prove}... \\ $$$$\:\:\:\:\:\mathrm{S}\:=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:+\frac{\mathrm{2}\pi\:\sqrt{\mathrm{3}}}{\mathrm{27}}\:...\blacksquare \\ $$$$\:\:\:\:\:\:=\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{{n}\Gamma\left({n}+\mathrm{1}\right)\Gamma\left({n}\right)}{\Gamma\left(\mathrm{2}{n}+\mathrm{1}\right)}=\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}{n}\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{n}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{n}} {dt} \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{d}}{{dy}}\left[\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}{y}^{{n}} \left(\mathrm{1}−{t}\right)^{{n}} \right]_{{y}={t}} {dt}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{t}}{\left(\mathrm{1}−{t}\left(\mathrm{1}−{t}\right)\right)^{\mathrm{2}} }{dt} \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{u}}{\left({u}^{\mathrm{2}} −{u}+\mathrm{1}\right)^{\mathrm{2}} }{du}=\int_{\mathrm{1}} ^{+\infty} \frac{{u}}{\left({u}^{\mathrm{2}} −{u}+\mathrm{1}\right)^{\mathrm{2}} }{du} \\ $$$${S}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{+\infty} \frac{{udu}}{\left({u}^{\mathrm{2}} −{u}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\frac{{d}}{{da}}\left[\int_{\mathrm{0}} ^{+\infty} \frac{{du}}{\left({u}^{\mathrm{2}} −{au}+\mathrm{1}\right)}\right]_{{a}=\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\frac{{d}}{{da}}\left[\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}}\left(\frac{\pi}{\mathrm{2}}+{Arctan}\left(\frac{{a}}{\:\mathrm{2}\sqrt{\mathrm{1}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}}\right)\right)\right]_{{a}=\mathrm{1}} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left[\:\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}}\left(\frac{\pi}{\mathrm{2}}+{Arctan}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\right)−\frac{\mathrm{1}}{\:\mathrm{2}\sqrt{\mathrm{3}}}\left(\frac{\frac{−\mathrm{1}}{\:\sqrt{\mathrm{3}}}−\sqrt{\mathrm{3}}}{\mathrm{4}}\right)\right] \\ $$$$\:\:=\frac{\mathrm{2}\pi}{\:\mathrm{9}\sqrt{\mathrm{3}}}+\frac{\mathrm{1}}{\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{2}\pi\sqrt{\mathrm{3}}}{\mathrm{27}} \\ $$

Commented by mnjuly1970 last updated on 28/Aug/21

verh nice sir kamel..tashakor

$${verh}\:{nice}\:{sir}\:{kamel}..{tashakor} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com