Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 211245 by Ghisom last updated on 01/Sep/24

prove:  ∫_0 ^∞ (t^(α−1) /(t^π +1))dt=(1/(sin α))

$$\mathrm{prove}: \\ $$$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{t}^{\alpha−\mathrm{1}} }{{t}^{\pi} +\mathrm{1}}{dt}=\frac{\mathrm{1}}{\mathrm{sin}\:\alpha} \\ $$

Answered by Frix last updated on 02/Sep/24

∫_0 ^∞  (t^(α−1) /(t^π +1))dt =^([u=t^π ])  (1/π)∫_0 ^∞  (u^((α/π)−1) /(u+1))du=  =(1/π)∫_0 ^∞  (u^((α/π)−1) /((u+1)^((α/π)+(1−(α/π))) ))du=  =(1/π)B ((α/π), 1−(α/π)) =((Γ ((α/π)) Γ (1−(α/π)))/(πΓ ((α/π)+(1−(α/π))))) =^([(α/π)=z])   =((Γ (z) Γ (1−z))/(πΓ (1)))=((πcsc (πz))/π) =^([z=(α/π)])  csc α =  =(1/(sin α))

$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{{t}^{\alpha−\mathrm{1}} }{{t}^{\pi} +\mathrm{1}}{dt}\:\overset{\left[{u}={t}^{\pi} \right]} {=}\:\frac{\mathrm{1}}{\pi}\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{{u}^{\frac{\alpha}{\pi}−\mathrm{1}} }{{u}+\mathrm{1}}{du}= \\ $$$$=\frac{\mathrm{1}}{\pi}\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{{u}^{\frac{\alpha}{\pi}−\mathrm{1}} }{\left({u}+\mathrm{1}\right)^{\frac{\alpha}{\pi}+\left(\mathrm{1}−\frac{\alpha}{\pi}\right)} }{du}= \\ $$$$=\frac{\mathrm{1}}{\pi}{B}\:\left(\frac{\alpha}{\pi},\:\mathrm{1}−\frac{\alpha}{\pi}\right)\:=\frac{\Gamma\:\left(\frac{\alpha}{\pi}\right)\:\Gamma\:\left(\mathrm{1}−\frac{\alpha}{\pi}\right)}{\pi\Gamma\:\left(\frac{\alpha}{\pi}+\left(\mathrm{1}−\frac{\alpha}{\pi}\right)\right)}\:\overset{\left[\frac{\alpha}{\pi}={z}\right]} {=} \\ $$$$=\frac{\Gamma\:\left({z}\right)\:\Gamma\:\left(\mathrm{1}−{z}\right)}{\pi\Gamma\:\left(\mathrm{1}\right)}=\frac{\pi\mathrm{csc}\:\left(\pi{z}\right)}{\pi}\:\overset{\left[{z}=\frac{\alpha}{\pi}\right]} {=}\:\mathrm{csc}\:\alpha\:= \\ $$$$=\frac{\mathrm{1}}{\mathrm{sin}\:\alpha} \\ $$

Commented by Ghisom last updated on 02/Sep/24

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com