Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 11594 by JAZAR last updated on 28/Mar/17

please how can demonstred   sin(2x)_ /cos(2x)=2sin(2x)

$${please}\:{how}\:{can}\:{demonstred}\: \\ $$$${sin}\left(\mathrm{2}{x}\underset{} {\right)}/{cos}\left(\mathrm{2}{x}\right)=\mathrm{2}{sin}\left(\mathrm{2}{x}\right) \\ $$

Answered by mrW1 last updated on 28/Mar/17

that′s not true!  sin (2x)/cos (2x)=tan (2x)≠2sin (2x)    but  sin (4x)/cos (2x)=2sin (2x)  since sin (4x)=2sin (2x)cos (2x)

$${that}'{s}\:{not}\:{true}! \\ $$$$\mathrm{sin}\:\left(\mathrm{2}{x}\right)/\mathrm{cos}\:\left(\mathrm{2}{x}\right)=\mathrm{tan}\:\left(\mathrm{2}{x}\right)\neq\mathrm{2sin}\:\left(\mathrm{2}{x}\right) \\ $$$$ \\ $$$${but} \\ $$$$\mathrm{sin}\:\left(\mathrm{4}{x}\right)/\mathrm{cos}\:\left(\mathrm{2}{x}\right)=\mathrm{2sin}\:\left(\mathrm{2}{x}\right) \\ $$$${since}\:\mathrm{sin}\:\left(\mathrm{4}{x}\right)=\mathrm{2sin}\:\left(\mathrm{2}{x}\right)\mathrm{cos}\:\left(\mathrm{2}{x}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com