Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 17638 by chux last updated on 08/Jul/17

please help me with this  confusing question    x^(2x/y) ×y^(y/x) =4......(1)    (xy)^(xy+yx) =16.....(2)    solve for x and y

$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{with}\:\mathrm{this} \\ $$$$\mathrm{confusing}\:\mathrm{question} \\ $$$$ \\ $$$$\mathrm{x}^{\mathrm{2x}/\mathrm{y}} ×\mathrm{y}^{\mathrm{y}/\mathrm{x}} =\mathrm{4}......\left(\mathrm{1}\right) \\ $$$$ \\ $$$$\left(\mathrm{xy}\right)^{\mathrm{xy}+\mathrm{yx}} =\mathrm{16}.....\left(\mathrm{2}\right) \\ $$$$ \\ $$$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$

Commented by mrW1 last updated on 09/Jul/17

x=1 and y=2

$$\mathrm{x}=\mathrm{1}\:\mathrm{and}\:\mathrm{y}=\mathrm{2} \\ $$

Commented by chux last updated on 09/Jul/17

please can it be solved analytically.

$$\mathrm{please}\:\mathrm{can}\:\mathrm{it}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{analytically}. \\ $$$$ \\ $$

Commented by mrW1 last updated on 09/Jul/17

from (2) you get  [(xy)^((xy)) ]^2 =16  (xy)^((xy)) =4  (xy)=2  from (1) you get  x^(2x/y) =4y^(−y/x)   (x^(2x/y) )^(xy) =(4y^(−y/x) )^(xy)   x^(2x^2 ) =16y^(−y^2 )   x^(2x^2 ) =16((x/2))^(2/x^2 )   x^(2(x^2 −(1/x^2 ))) =2^(2(1−(1/x^2 )))   ⇒x=1 and 1−(1/x^2 )=0

$$\mathrm{from}\:\left(\mathrm{2}\right)\:\mathrm{you}\:\mathrm{get} \\ $$$$\left[\left(\mathrm{xy}\right)^{\left(\mathrm{xy}\right)} \right]^{\mathrm{2}} =\mathrm{16} \\ $$$$\left(\mathrm{xy}\right)^{\left(\mathrm{xy}\right)} =\mathrm{4} \\ $$$$\left(\mathrm{xy}\right)=\mathrm{2} \\ $$$$\mathrm{from}\:\left(\mathrm{1}\right)\:\mathrm{you}\:\mathrm{get} \\ $$$$\mathrm{x}^{\mathrm{2x}/\mathrm{y}} =\mathrm{4y}^{−\mathrm{y}/\mathrm{x}} \\ $$$$\left(\mathrm{x}^{\mathrm{2x}/\mathrm{y}} \right)^{\mathrm{xy}} =\left(\mathrm{4y}^{−\mathrm{y}/\mathrm{x}} \right)^{\mathrm{xy}} \\ $$$$\mathrm{x}^{\mathrm{2x}^{\mathrm{2}} } =\mathrm{16y}^{−\mathrm{y}^{\mathrm{2}} } \\ $$$$\mathrm{x}^{\mathrm{2x}^{\mathrm{2}} } =\mathrm{16}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)^{\frac{\mathrm{2}}{\mathrm{x}^{\mathrm{2}} }} \\ $$$$\mathrm{x}^{\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\right)} =\mathrm{2}^{\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\right)} \\ $$$$\Rightarrow\mathrm{x}=\mathrm{1}\:\mathrm{and}\:\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }=\mathrm{0} \\ $$

Commented by chux last updated on 09/Jul/17

wow!! thank you so much.

$$\mathrm{wow}!!\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com