Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 213893 by issac last updated on 21/Nov/24

∫_( −π) ^(  π)   (dz/(1+3cos^2 (z)))=¿¿

$$\int_{\:−\pi} ^{\:\:\pi} \:\:\frac{\mathrm{d}{z}}{\mathrm{1}+\mathrm{3cos}^{\mathrm{2}} \left({z}\right)}=¿¿\:\:\: \\ $$

Commented by BHOOPENDRA last updated on 21/Nov/24

π???

$$\pi??? \\ $$

Commented by issac last updated on 21/Nov/24

can you explain why ∫ (dr/(1+3cos^2 (r)))=π ??

$$\mathrm{can}\:\mathrm{you}\:\mathrm{explain}\:\mathrm{why}\:\int\:\frac{\mathrm{d}{r}}{\mathrm{1}+\mathrm{3cos}^{\mathrm{2}} \left({r}\right)}=\pi\:?? \\ $$

Answered by mr W last updated on 21/Nov/24

=4∫_0 ^(π/2) (dz/(1+3 cos^2  z))  =4∫_0 ^(π/2) (dz/(4−3 sin^2  z))  =(4/3)∫_0 ^(π/2) (dz/(((2/( (√3))))^2 −sin^2  z))  =2[tan^(−1) (((tan z)/2))]_0 ^(π/2)   =2×(π/2)=π

$$=\mathrm{4}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dz}}{\mathrm{1}+\mathrm{3}\:\mathrm{cos}^{\mathrm{2}} \:{z}} \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dz}}{\mathrm{4}−\mathrm{3}\:\mathrm{sin}^{\mathrm{2}} \:{z}} \\ $$$$=\frac{\mathrm{4}}{\mathrm{3}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dz}}{\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} −\mathrm{sin}^{\mathrm{2}} \:{z}} \\ $$$$=\mathrm{2}\left[\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{tan}\:{z}}{\mathrm{2}}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\mathrm{2}×\frac{\pi}{\mathrm{2}}=\pi \\ $$

Commented by issac last updated on 21/Nov/24

oh u r genius thx :)

$$\left.{oh}\:{u}\:{r}\:{genius}\:{thx}\::\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com