Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 88559 by 675480065 last updated on 11/Apr/20

∫_((−π)/6) ^((3π)/4) ((√(tanx))/(1+(√(tanx))))dx

$$\int_{\frac{−\pi}{\mathrm{6}}} ^{\frac{\mathrm{3}\pi}{\mathrm{4}}} \frac{\sqrt{{tanx}}}{\mathrm{1}+\sqrt{{tanx}}}{dx} \\ $$

Commented by MJS last updated on 11/Apr/20

t=(√(tan x)) → dx=2cos^2  x (√(tan x))dt  this leads to  2∫(t^2 /((t^4 +1)(t+1)))dt=  =∫(dt/(t+1))−((1−(√2))/2)∫((t+1)/(t^2 −(√2)t+1))dt−((1+(√2))/2)∫((t+1)/(t^2 +(√2)t+1))dt  now use formulas  but with −(π/6)≤x≤((3π)/4) the integral ∉R

$$\mathrm{t}=\sqrt{\mathrm{tan}\:{x}}\:\rightarrow\:{dx}=\mathrm{2cos}^{\mathrm{2}} \:{x}\:\sqrt{\mathrm{tan}\:{x}}{dt} \\ $$$$\mathrm{this}\:\mathrm{leads}\:\mathrm{to} \\ $$$$\mathrm{2}\int\frac{{t}^{\mathrm{2}} }{\left({t}^{\mathrm{4}} +\mathrm{1}\right)\left({t}+\mathrm{1}\right)}{dt}= \\ $$$$=\int\frac{{dt}}{{t}+\mathrm{1}}−\frac{\mathrm{1}−\sqrt{\mathrm{2}}}{\mathrm{2}}\int\frac{{t}+\mathrm{1}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}+\mathrm{1}}{dt}−\frac{\mathrm{1}+\sqrt{\mathrm{2}}}{\mathrm{2}}\int\frac{{t}+\mathrm{1}}{{t}^{\mathrm{2}} +\sqrt{\mathrm{2}}{t}+\mathrm{1}}{dt} \\ $$$$\mathrm{now}\:\mathrm{use}\:\mathrm{formulas} \\ $$$$\mathrm{but}\:\mathrm{with}\:−\frac{\pi}{\mathrm{6}}\leqslant{x}\leqslant\frac{\mathrm{3}\pi}{\mathrm{4}}\:\mathrm{the}\:\mathrm{integral}\:\notin\mathbb{R} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com