Question Number 54378 by ngo last updated on 02/Feb/19 | ||
$$\underset{\pi/\mathrm{3}} {\overset{\mathrm{3}\pi/\mathrm{2}} {\int}}\:\:\left[\:\mathrm{2}\:\mathrm{cos}\:{x}\:\right]\:{dx}\:= \\ $$ | ||
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19 | ||
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19 | ||
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19 | ||
$${with}\:{the}\:{help}\:{of}\:{graph}\:{trying}\:{to}\:{solve}... \\ $$$$\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:\left[\mathrm{2}{cosx}\right]{dx}+\int_{\frac{\pi}{\mathrm{2}}} ^{\frac{\mathrm{2}\pi}{\mathrm{3}}} \left[\mathrm{2}{cosx}\right]{dx}+\int_{\frac{\mathrm{2}\pi}{\mathrm{3}}} ^{\frac{\mathrm{4}\pi}{\mathrm{3}}} \left[\mathrm{2}{cosx}\right]{dx}+\int_{\frac{\mathrm{4}\pi}{\mathrm{3}}} ^{\frac{\mathrm{3}\pi}{\mathrm{2}}} \:\left[\mathrm{2}{cosx}\right]{dx} \\ $$$$=\mathrm{0}+\left(−\mathrm{1}\right)\left(\frac{\mathrm{2}\pi}{\mathrm{3}}−\frac{\pi}{\mathrm{2}}\right)+\left(−\mathrm{2}\right)\left(\frac{\mathrm{4}\pi}{\mathrm{3}}−\frac{\mathrm{2}\pi}{\mathrm{3}}\right)+\left(−\mathrm{1}\right)\left(\frac{\mathrm{3}\pi}{\mathrm{2}}−\frac{\mathrm{4}\pi}{\mathrm{3}}\right) \\ $$$$=\left(−\mathrm{1}\right)\left(\frac{\pi}{\mathrm{6}}\right)+\left(−\mathrm{2}\right)\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)+\left(−\mathrm{1}\right)\left(\frac{\pi}{\mathrm{6}}\right) \\ $$$$=−\frac{\pi}{\mathrm{3}}−\frac{\mathrm{4}\pi}{\mathrm{3}}=\frac{−\mathrm{5}\pi}{\mathrm{3}} \\ $$$${pls}\:{check}.... \\ $$$$ \\ $$$$ \\ $$ | ||