Question Number 115030 by bobhans last updated on 23/Sep/20 | ||
$$\underset{−\frac{\pi}{\mathrm{2}}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\sqrt{\mathrm{sec}\:{x}−\mathrm{cos}\:{x}}\:{dx}\:=? \\ $$ | ||
Answered by bemath last updated on 23/Sep/20 | ||
$$\underset{−\frac{\pi}{\mathrm{2}}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\sqrt{\frac{\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} {x}}{\mathrm{cos}\:{x}}}\:{dx}\:=\:\underset{−\frac{\pi}{\mathrm{2}}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{\mid\mathrm{sin}\:{x}\mid}{\:\sqrt{\mathrm{cos}\:{x}}}\:{dx} \\ $$$$=\:−\underset{−\frac{\pi}{\mathrm{2}}} {\overset{\mathrm{0}} {\int}}\frac{\mathrm{sin}\:{x}}{\:\sqrt{\mathrm{cos}\:{x}}}\:{dx}\:+\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{\mathrm{sin}\:{x}}{\:\sqrt{\mathrm{cos}\:{x}}}\:{dx}\: \\ $$$$=\:\underset{−\frac{\pi}{\mathrm{2}}} {\overset{\mathrm{0}} {\int}}\frac{{d}\left(\mathrm{cos}\:{x}\right)}{\:\sqrt{\mathrm{cos}\:{x}}}\:−\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{{d}\left(\mathrm{cos}\:{x}\right)}{\:\sqrt{\mathrm{cos}\:{x}}} \\ $$$$=\:\mathrm{2}\:\left[\:\sqrt{\mathrm{cos}\:{x}\:}\:\right]_{−\frac{\pi}{\mathrm{2}}} ^{\:\:\:\mathrm{0}} \:\:−\mathrm{2}\:\left[\:\sqrt{\mathrm{cos}\:{x}\:}\:\right]\:_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\:\mathrm{2}\:−\mathrm{2}\left(\mathrm{0}−\mathrm{1}\right)\:=\:\mathrm{4} \\ $$ | ||
Answered by mathmax by abdo last updated on 23/Sep/20 | ||
$$\mathrm{A}\:=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\frac{\mathrm{1}}{\mathrm{cosx}}−\mathrm{cosx}}\mathrm{dx}\:\:\Rightarrow\mathrm{A}\:=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\frac{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \mathrm{x}}{\mathrm{cosx}}}\mathrm{dx} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mid\mathrm{sinx}\mid}{\sqrt{\mathrm{cosx}}}\mathrm{dx}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{sinx}}{\sqrt{\mathrm{cosx}}}\mathrm{dx}\:=\mathrm{2}\left[−\mathrm{2}\sqrt{\mathrm{cosx}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\mathrm{2}\left\{\mathrm{2}\right\}\:=\mathrm{4} \\ $$ | ||