Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 213934 by ajfour last updated on 22/Nov/24

∫_(−π/2) ^( π/2) ∫_0 ^( R) (((dθ)(dr)(a+rcos θ))/((r^2 +a^2 +2arcos θ)^(3/2) )) =f(a,R)  Find f(a, R).

$$\int_{−\pi/\mathrm{2}} ^{\:\pi/\mathrm{2}} \int_{\mathrm{0}} ^{\:{R}} \frac{\left({d}\theta\right)\left({dr}\right)\left({a}+{r}\mathrm{cos}\:\theta\right)}{\left({r}^{\mathrm{2}} +{a}^{\mathrm{2}} +\mathrm{2}{ar}\mathrm{cos}\:\theta\right)^{\mathrm{3}/\mathrm{2}} }\:={f}\left({a},{R}\right) \\ $$$${Find}\:{f}\left({a},\:{R}\right). \\ $$

Commented by ajfour last updated on 23/Nov/24

Its correctly written.

$${Its}\:{correctly}\:{written}. \\ $$

Commented by ajfour last updated on 23/Nov/24

please someone look into this too!

$${please}\:{someone}\:{look}\:{into}\:{this}\:{too}! \\ $$

Commented by BHOOPENDRA last updated on 23/Nov/24

(a+rcosθ) or (r+acosθ) check once  please

$$\left({a}+{rcos}\theta\right)\:{or}\:\left({r}+{acos}\theta\right)\:{check}\:{once} \\ $$$${please}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com