Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 144060 by Khalmohmmad last updated on 21/Jun/21

p(x)=(x−1)^2 Q(x)+3x+8  p(x)=(x−2)Q(x)+R  R=?

$${p}\left({x}\right)=\left({x}−\mathrm{1}\right)^{\mathrm{2}} {Q}\left({x}\right)+\mathrm{3}{x}+\mathrm{8} \\ $$$${p}\left({x}\right)=\left({x}−\mathrm{2}\right){Q}\left({x}\right)+{R} \\ $$$${R}=? \\ $$

Commented by Rasheed.Sindhi last updated on 21/Jun/21

Q(x) is same in both cases!!!?

$${Q}\left({x}\right)\:{is}\:{same}\:{in}\:{both}\:{cases}!!!? \\ $$

Answered by Rasheed.Sindhi last updated on 21/Jun/21

p(x)=(x−1)^2 Q_1 (x)+3x+8.....(i)  p(x)=(x−2)Q_2 (x)+R.....(ii)   ;  R=?  ^• Let Q_1 (x)=q(constant  p(x)=(x−1)^2 q+3x+8          =qx^2 −2xq+q+3x+8          =qx^2 +(3−2q)x+q+8  When divided by x−2          R=q(2)^2 +(3−2q)(2)+q+8          R=4q+6−4q+q+8              =q+14  ^(• ) Q_1 (x)=ax+b      p(x)=(x−1)^2 Q_1 (x)+3x+8  p(x)=(x−1)^2 (ax+b)+3x+8          =(x^2 −2x+1)(ax+b)+3x+8     =ax^3 +bx^2 −2ax^2 −2bx+ax+b+3x+8    =ax^3 +(b−2a)x^2 +(a+3−2b)x+b+8  When divided by x−2  R=p(2)=a(2)^3 +(b−2a)(2)^2 +(a+3−2b)(2)+b+8  =8a+4b−8a+2a+6−4b+b+8  =2a+b+14  No unique answer.  R depends upon Q_1 (x).

$${p}\left({x}\right)=\left({x}−\mathrm{1}\right)^{\mathrm{2}} {Q}_{\mathrm{1}} \left({x}\right)+\mathrm{3}{x}+\mathrm{8}.....\left({i}\right) \\ $$$${p}\left({x}\right)=\left({x}−\mathrm{2}\right){Q}_{\mathrm{2}} \left({x}\right)+{R}.....\left({ii}\right)\:\:\:;\:\:{R}=? \\ $$$$\:^{\bullet} {Let}\:{Q}_{\mathrm{1}} \left({x}\right)={q}\left({constant}\right. \\ $$$${p}\left({x}\right)=\left({x}−\mathrm{1}\right)^{\mathrm{2}} {q}+\mathrm{3}{x}+\mathrm{8} \\ $$$$\:\:\:\:\:\:\:\:={qx}^{\mathrm{2}} −\mathrm{2}{xq}+{q}+\mathrm{3}{x}+\mathrm{8} \\ $$$$\:\:\:\:\:\:\:\:={qx}^{\mathrm{2}} +\left(\mathrm{3}−\mathrm{2}{q}\right){x}+{q}+\mathrm{8} \\ $$$${When}\:{divided}\:{by}\:{x}−\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:{R}={q}\left(\mathrm{2}\right)^{\mathrm{2}} +\left(\mathrm{3}−\mathrm{2}{q}\right)\left(\mathrm{2}\right)+{q}+\mathrm{8} \\ $$$$\:\:\:\:\:\:\:\:{R}=\mathrm{4}{q}+\mathrm{6}−\mathrm{4}{q}+{q}+\mathrm{8} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:={q}+\mathrm{14} \\ $$$$\:^{\bullet\:} {Q}_{\mathrm{1}} \left({x}\right)={ax}+{b}\:\:\:\: \\ $$$${p}\left({x}\right)=\left({x}−\mathrm{1}\right)^{\mathrm{2}} {Q}_{\mathrm{1}} \left({x}\right)+\mathrm{3}{x}+\mathrm{8} \\ $$$${p}\left({x}\right)=\left({x}−\mathrm{1}\right)^{\mathrm{2}} \left({ax}+{b}\right)+\mathrm{3}{x}+\mathrm{8} \\ $$$$\:\:\:\:\:\:\:\:=\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}\right)\left({ax}+{b}\right)+\mathrm{3}{x}+\mathrm{8} \\ $$$$\:\:\:={ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} −\mathrm{2}{ax}^{\mathrm{2}} −\mathrm{2}{bx}+{ax}+{b}+\mathrm{3}{x}+\mathrm{8} \\ $$$$\:\:={ax}^{\mathrm{3}} +\left({b}−\mathrm{2}{a}\right){x}^{\mathrm{2}} +\left({a}+\mathrm{3}−\mathrm{2}{b}\right){x}+{b}+\mathrm{8} \\ $$$${When}\:{divided}\:{by}\:{x}−\mathrm{2} \\ $$$${R}={p}\left(\mathrm{2}\right)={a}\left(\mathrm{2}\right)^{\mathrm{3}} +\left({b}−\mathrm{2}{a}\right)\left(\mathrm{2}\right)^{\mathrm{2}} +\left({a}+\mathrm{3}−\mathrm{2}{b}\right)\left(\mathrm{2}\right)+{b}+\mathrm{8} \\ $$$$=\cancel{\mathrm{8}{a}}+\cancel{\mathrm{4}{b}}−\cancel{\mathrm{8}{a}}+\mathrm{2}{a}+\mathrm{6}−\cancel{\mathrm{4}{b}}+{b}+\mathrm{8} \\ $$$$=\mathrm{2}{a}+{b}+\mathrm{14} \\ $$$${No}\:{unique}\:{answer}. \\ $$$${R}\:{depends}\:{upon}\:{Q}_{\mathrm{1}} \left({x}\right). \\ $$

Answered by Rasheed.Sindhi last updated on 21/Jun/21

p(x)=(x−1)^2 Q_1 (x)+3x+8  p(x)=(x−2)Q_2 (x)+R  ;  R=?  p(x) when is divided by x−2 giving   remainder R  (x−1)^2 Q_1 (x)+3x+8  is divided by  x−2 giving remainder R  R=p(2)=(2−1)^2 Q_1 (2)+3(2)+8  R=p(2)=Q_1 (2)+14  ^• Let  Q_1 (x)=q (constant)  R=q+14  ^• Let Q_1 (x)=ax+b  R=Q_1 (2)+14=a(2)+b+14            R=2a+b+14  ^• Let Q_1 (x)=ax^2 +bx+c      R=a(2)^2 +b(2)+c+14         R=4a+2b+c+14  R depends on Q_1 (x) (or Q_2 (x) ).  It′s not unique.

$${p}\left({x}\right)=\left({x}−\mathrm{1}\right)^{\mathrm{2}} {Q}_{\mathrm{1}} \left({x}\right)+\mathrm{3}{x}+\mathrm{8} \\ $$$${p}\left({x}\right)=\left({x}−\mathrm{2}\right){Q}_{\mathrm{2}} \left({x}\right)+{R}\:\:;\:\:{R}=? \\ $$$${p}\left({x}\right)\:{when}\:{is}\:{divided}\:{by}\:{x}−\mathrm{2}\:{giving}\: \\ $$$${remainder}\:{R} \\ $$$$\left({x}−\mathrm{1}\right)^{\mathrm{2}} {Q}_{\mathrm{1}} \left({x}\right)+\mathrm{3}{x}+\mathrm{8}\:\:{is}\:{divided}\:{by} \\ $$$${x}−\mathrm{2}\:{giving}\:{remainder}\:{R} \\ $$$${R}={p}\left(\mathrm{2}\right)=\left(\mathrm{2}−\mathrm{1}\right)^{\mathrm{2}} {Q}_{\mathrm{1}} \left(\mathrm{2}\right)+\mathrm{3}\left(\mathrm{2}\right)+\mathrm{8} \\ $$$${R}={p}\left(\mathrm{2}\right)={Q}_{\mathrm{1}} \left(\mathrm{2}\right)+\mathrm{14} \\ $$$$\:^{\bullet} {Let}\:\:{Q}_{\mathrm{1}} \left({x}\right)={q}\:\left({constant}\right) \\ $$$${R}={q}+\mathrm{14} \\ $$$$\:^{\bullet} {Let}\:{Q}_{\mathrm{1}} \left({x}\right)={ax}+{b} \\ $$$${R}={Q}_{\mathrm{1}} \left(\mathrm{2}\right)+\mathrm{14}={a}\left(\mathrm{2}\right)+{b}+\mathrm{14} \\ $$$$\:\:\:\:\:\:\:\:\:\:{R}=\mathrm{2}{a}+{b}+\mathrm{14} \\ $$$$\:^{\bullet} {Let}\:{Q}_{\mathrm{1}} \left({x}\right)={ax}^{\mathrm{2}} +{bx}+{c} \\ $$$$\:\:\:\:{R}={a}\left(\mathrm{2}\right)^{\mathrm{2}} +{b}\left(\mathrm{2}\right)+{c}+\mathrm{14} \\ $$$$\:\:\:\:\:\:\:{R}=\mathrm{4}{a}+\mathrm{2}{b}+{c}+\mathrm{14} \\ $$$${R}\:{depends}\:{on}\:{Q}_{\mathrm{1}} \left({x}\right)\:\left({or}\:{Q}_{\mathrm{2}} \left({x}\right)\:\right). \\ $$$${It}'{s}\:{not}\:{unique}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com