Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 105239 by bemath last updated on 27/Jul/20

Σ_(Σ_(p=5) ^6 p) ^(Σ_(p=8) ^(11) p)  ∫_(11) ^(13) (((12ky)/x^2 ) + 6x) dx = Σ_(Σ_(p=4) ^7 p) ^(Σ_(p=9) ^(12) p)  ∫_(11) ^(16) (x^2 y−(3/2)k)dx  solve for y

$$\underset{\underset{{p}=\mathrm{5}} {\overset{\mathrm{6}} {\sum}}{p}} {\overset{\underset{{p}=\mathrm{8}} {\overset{\mathrm{11}} {\sum}}{p}} {\sum}}\:\underset{\mathrm{11}} {\overset{\mathrm{13}} {\int}}\left(\frac{\mathrm{12}{ky}}{{x}^{\mathrm{2}} }\:+\:\mathrm{6}{x}\right)\:{dx}\:=\:\underset{\underset{{p}=\mathrm{4}} {\overset{\mathrm{7}} {\sum}}{p}} {\overset{\underset{{p}=\mathrm{9}} {\overset{\mathrm{12}} {\sum}}{p}} {\sum}}\:\underset{\mathrm{11}} {\overset{\mathrm{16}} {\int}}\left({x}^{\mathrm{2}} {y}−\frac{\mathrm{3}}{\mathrm{2}}{k}\right){dx} \\ $$$${solve}\:{for}\:{y} \\ $$

Answered by john santu last updated on 27/Jul/20

(1)Σ_(p = 5) ^6 p = 11  (2) Σ_(p = 8) ^(11) p = 38   (3) Σ_(p = 4) ^7 p = 22  (4) Σ_(p = 9) ^(12) p = 42  ⇔ Σ_(11) ^(38)  ∫_(11) ^(13) (12kx^(−2) y +6x) dx=  Σ_(11) ^(38)  [(−((12ky)/x)+3x^2 )]_(11) ^(13) =Σ_(11) ^(38) (3(48)+12ky((1/(11))−(1/(13))))  the strange question .

$$\left(\mathrm{1}\right)\underset{{p}\:=\:\mathrm{5}} {\overset{\mathrm{6}} {\sum}}{p}\:=\:\mathrm{11} \\ $$$$\left(\mathrm{2}\right)\:\underset{{p}\:=\:\mathrm{8}} {\overset{\mathrm{11}} {\sum}}{p}\:=\:\mathrm{38}\: \\ $$$$\left(\mathrm{3}\right)\:\underset{{p}\:=\:\mathrm{4}} {\overset{\mathrm{7}} {\sum}}{p}\:=\:\mathrm{22} \\ $$$$\left(\mathrm{4}\right)\:\underset{{p}\:=\:\mathrm{9}} {\overset{\mathrm{12}} {\sum}}{p}\:=\:\mathrm{42} \\ $$$$\Leftrightarrow\:\underset{\mathrm{11}} {\overset{\mathrm{38}} {\sum}}\:\underset{\mathrm{11}} {\overset{\mathrm{13}} {\int}}\left(\mathrm{12}{kx}^{−\mathrm{2}} {y}\:+\mathrm{6}{x}\right)\:{dx}= \\ $$$$\underset{\mathrm{11}} {\overset{\mathrm{38}} {\sum}}\:\left[\left(−\frac{\mathrm{12}{ky}}{{x}}+\mathrm{3}{x}^{\mathrm{2}} \right)\right]_{\mathrm{11}} ^{\mathrm{13}} =\underset{\mathrm{11}} {\overset{\mathrm{38}} {\sum}}\left(\mathrm{3}\left(\mathrm{48}\right)+\mathrm{12}{ky}\left(\frac{\mathrm{1}}{\mathrm{11}}−\frac{\mathrm{1}}{\mathrm{13}}\right)\right) \\ $$$${the}\:{strange}\:{question}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com