Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 193502 by horsebrand11 last updated on 15/Jun/23

 oolve     cos 2x .tan (((7π)/(19)))=tan (((17π)/(23)))+tan (((6π)/(23)))+tan (((12π)/(19)))

$$\:\cancel{\underline{{o}}}\mathrm{olve}\: \\ $$$$\:\:\mathrm{cos}\:\mathrm{2x}\:.\mathrm{tan}\:\left(\frac{\mathrm{7}\pi}{\mathrm{19}}\right)=\mathrm{tan}\:\left(\frac{\mathrm{17}\pi}{\mathrm{23}}\right)+\mathrm{tan}\:\left(\frac{\mathrm{6}\pi}{\mathrm{23}}\right)+\mathrm{tan}\:\left(\frac{\mathrm{12}\pi}{\mathrm{19}}\right) \\ $$

Answered by cortano12 last updated on 15/Jun/23

  If α+β=π then  { ((tan α+tan β=0)),((tan α cot β=−1)) :}   so cos  2x tan (((7π)/(19)))=0+tan (((12π)/(19)))   ⇔ cos  2x = −1    ⇔ cos  2x= cos π   ⇔ x=±(π/2) +k.π

$$\:\:\mathrm{If}\:\alpha+\beta=\pi\:\mathrm{then}\:\begin{cases}{\mathrm{tan}\:\alpha+\mathrm{tan}\:\beta=\mathrm{0}}\\{\mathrm{tan}\:\alpha\:\mathrm{cot}\:\beta=−\mathrm{1}}\end{cases} \\ $$$$\:\mathrm{so}\:\mathrm{cos}\:\:\mathrm{2x}\:\mathrm{tan}\:\left(\frac{\mathrm{7}\pi}{\mathrm{19}}\right)=\mathrm{0}+\mathrm{tan}\:\left(\frac{\mathrm{12}\pi}{\mathrm{19}}\right) \\ $$$$\:\Leftrightarrow\:\mathrm{cos}\:\:\mathrm{2x}\:=\:−\mathrm{1}\: \\ $$$$\:\Leftrightarrow\:\mathrm{cos}\:\:\mathrm{2x}=\:\mathrm{cos}\:\pi \\ $$$$\:\Leftrightarrow\:\mathrm{x}=\pm\frac{\pi}{\mathrm{2}}\:+\mathrm{k}.\pi\: \\ $$

Commented by BaliramKumar last updated on 15/Jun/23

sin2x → cos2x

$$\mathrm{sin2x}\:\rightarrow\:\mathrm{cos2x} \\ $$

Answered by aba last updated on 15/Jun/23

⇒cos2x.tg((7π)/(19))=tg(π−((6π)/(23)))+tg(((6π)/(23)))+tg(π−((7π)/(19)))  ⇒cos2x.tg((7π)/(19))=−tg((6π)/(23))+tg((6π)/(23))−tg((7π)/(19))  ⇒cos2x=−1=cos(π)  ⇒ { ((2x≡π[2π])),((2x≡−π[2π])) :} ⇒ { ((x≡(1/2)π[2π]=(1/2)π(2k+1))),((x≡−(1/2)π[2π]=(1/2)π(2k−1))) :}k∈Z

$$\Rightarrow\mathrm{cos2x}.\mathrm{tg}\frac{\mathrm{7}\pi}{\mathrm{19}}=\mathrm{tg}\left(\pi−\frac{\mathrm{6}\pi}{\mathrm{23}}\right)+\mathrm{tg}\left(\frac{\mathrm{6}\pi}{\mathrm{23}}\right)+\mathrm{tg}\left(\pi−\frac{\mathrm{7}\pi}{\mathrm{19}}\right) \\ $$$$\Rightarrow\mathrm{cos2x}.\mathrm{tg}\frac{\mathrm{7}\pi}{\mathrm{19}}=−\mathrm{tg}\frac{\mathrm{6}\pi}{\mathrm{23}}+\mathrm{tg}\frac{\mathrm{6}\pi}{\mathrm{23}}−\mathrm{tg}\frac{\mathrm{7}\pi}{\mathrm{19}} \\ $$$$\Rightarrow\mathrm{cos2x}=−\mathrm{1}=\mathrm{cos}\left(\pi\right) \\ $$$$\Rightarrow\begin{cases}{\mathrm{2x}\equiv\pi\left[\mathrm{2}\pi\right]}\\{\mathrm{2x}\equiv−\pi\left[\mathrm{2}\pi\right]}\end{cases}\:\Rightarrow\begin{cases}{\mathrm{x}\equiv\frac{\mathrm{1}}{\mathrm{2}}\pi\left[\mathrm{2}\pi\right]=\frac{\mathrm{1}}{\mathrm{2}}\pi\left(\mathrm{2k}+\mathrm{1}\right)}\\{\mathrm{x}\equiv−\frac{\mathrm{1}}{\mathrm{2}}\pi\left[\mathrm{2}\pi\right]=\frac{\mathrm{1}}{\mathrm{2}}\pi\left(\mathrm{2k}−\mathrm{1}\right)}\end{cases}\mathrm{k}\in\mathbb{Z} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com