Question Number 139217 by mnjuly1970 last updated on 24/Apr/21 | ||
$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:.....\:{nice}\:....\:....\:{math}.... \\ $$$$\:\:\:{prove}\:{that}: \\ $$$$\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{ln}\left(\mathrm{1}+{sin}\left({x}\right).{cos}\left({x}\right)\right)}{{tan}\left({x}\right)}{dx}=\frac{\mathrm{5}\pi^{\mathrm{2}} }{\mathrm{72}} \\ $$ | ||
Commented by liki last updated on 24/Apr/21 | ||
Commented by liki last updated on 24/Apr/21 | ||
$$..\mathrm{help}\:\mathrm{pls} \\ $$ | ||
Commented by mr W last updated on 24/Apr/21 | ||
$${to}\:{liki}: \\ $$$${please}\:{don}'{t}\:{insert}\:{your}\:{question}\:{into} \\ $$$${the}\:{threads}\:{of}\:{other}\:{people}\:{for}\:{other} \\ $$$${questions}!\:{just}\:{open}\:{a}\:{new}\:{thread}\:{for} \\ $$$${your}\:{own}\:{question}!\:{if}\:{you}\:{don}'{t}\:{know} \\ $$$${how},\:{just}\:{read}\:{the}\:{ForumHelp}! \\ $$ | ||
Answered by qaz last updated on 24/Apr/21 | ||
$$\phi=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{ln}\left(\mathrm{1}+\mathrm{sin}\:{x}\mathrm{cos}\:{x}\right)}{\mathrm{tan}\:{x}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{ln}\left(\mathrm{1}+\frac{\mathrm{tan}\:{x}}{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} {x}}\right)}{\mathrm{tan}\:{x}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{ln}\left(\mathrm{1}+\mathrm{tan}\:{x}+\mathrm{tan}\:^{\mathrm{2}} {x}\right)β{ln}\left(\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} {x}\right)}{\mathrm{tan}\:{x}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right)β{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right)β{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}+\int_{\mathrm{1}} ^{\infty} \frac{{ln}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right)β{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\frac{\mathrm{1}}{{x}}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)}\left(β\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right)β{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right)β{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{xdx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right)β{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}β{x}^{\mathrm{3}} \right)β{ln}\left(\mathrm{1}β{x}\right)}{{x}}{dx}β\frac{\mathrm{1}}{\mathrm{2}}\eta\left(\mathrm{2}\right) \\ $$$$=β\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{3}{n}β\mathrm{1}} }{{n}}{dx}+\frac{\pi^{\mathrm{2}} }{\mathrm{6}}β\frac{\pi^{\mathrm{2}} }{\mathrm{24}} \\ $$$$=β\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{3}{n}^{\mathrm{2}} }+\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$$=β\frac{\pi^{\mathrm{2}} }{\mathrm{18}}+\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$$=\frac{\mathrm{5}\pi^{\mathrm{2}} }{\mathrm{72}} \\ $$ | ||
Commented by mnjuly1970 last updated on 24/Apr/21 | ||
$$\:\:{great},\:{thanks}\:{alot}\:{master}... \\ $$ | ||