Question Number 126003 by mnjuly1970 last updated on 16/Dec/20 | ||
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:{integral}... \\ $$$$\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\phi=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {tan}\left({x}\right){ln}\left({sin}\left({x}\right)\right){ln}\left({cos}\left({x}\right)\right){dx}=\frac{\zeta\left(\mathrm{3}\right.}{\mathrm{8}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathscr{G}{ood}\:{luck} \\ $$ | ||
Answered by Olaf last updated on 16/Dec/20 | ||
$$\phi\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{tan}{x}\mathrm{ln}\left(\mathrm{cos}{x}\right)\mathrm{ln}\left(\mathrm{sin}{x}\right){dx} \\ $$$$\phi\:=\:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left[−\mathrm{tan}{x}\mathrm{ln}\left(\mathrm{cos}{x}\right)\right]\mathrm{ln}\left(\mathrm{sin}{x}\right){dx} \\ $$$$\phi\:=\:−\left[\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{cos}{x}\right)\mathrm{ln}\left(\mathrm{sin}{x}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left[\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{cos}{x}\right)\right]\mathrm{cot}{xdx} \\ $$$$\phi\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cot}{x}.\mathrm{ln}^{\mathrm{2}} \left(\mathrm{cos}{x}\right){dx} \\ $$$$\mathrm{Let}\:{u}\:=\:\mathrm{cos}{x} \\ $$$${du}\:=\:−\mathrm{sin}{xdx}\:=\:−\sqrt{\mathrm{1}−{u}^{\mathrm{2}} }{dx} \\ $$$$\phi\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}} ^{\mathrm{0}} \frac{{u}}{\:\sqrt{\mathrm{1}−{u}^{\mathrm{2}} }}\mathrm{ln}^{\mathrm{2}} {u}\left(−\frac{{du}}{\:\sqrt{\mathrm{1}−{u}^{\mathrm{2}} }}\right) \\ $$$$\phi\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{u}}{\:\mathrm{1}−{u}^{\mathrm{2}} }\mathrm{ln}^{\mathrm{2}} {udu} \\ $$$$\phi\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} {u}.\mathrm{ln}^{\mathrm{2}} {u}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{u}^{\mathrm{2}{n}} {du} \\ $$$$\phi\:=\:\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} {u}^{\mathrm{2}{n}+\mathrm{1}} \mathrm{ln}^{\mathrm{2}} {udu} \\ $$$$\phi\:=\:\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left\{\left[\frac{{u}^{\mathrm{2}{n}+\mathrm{2}} }{\mathrm{2}{n}+\mathrm{2}}\mathrm{ln}^{\mathrm{2}} {u}\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{u}^{\mathrm{2}{n}+\mathrm{2}} }{\mathrm{2}{n}+\mathrm{2}}\left(\mathrm{2}\frac{\mathrm{ln}{u}}{{u}}\right){du}\right\} \\ $$$$\phi\:=\:\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left\{−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{u}^{\mathrm{2}{n}+\mathrm{2}} }{\mathrm{2}{n}+\mathrm{2}}\left(\mathrm{2}\frac{\mathrm{ln}{u}}{{u}}\right){du}\right\} \\ $$$$\phi\:=\:−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{u}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{2}}\mathrm{ln}{udu} \\ $$$$\phi\:=\:−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left\{\left[\frac{{u}^{\mathrm{2}{n}+\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{2}\right)^{\mathrm{2}} }\mathrm{ln}{u}\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{u}^{\mathrm{2}{n}+\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{2}\right)^{\mathrm{2}} }.\frac{{du}}{{u}}\right\} \\ $$$$\phi\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{u}^{\mathrm{2}{n}+\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{2}\right)^{\mathrm{2}} }.\frac{{du}}{{u}} \\ $$$$\phi\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{u}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{2}\right)^{\mathrm{2}} }.{du} \\ $$$$\phi\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\frac{{u}^{\mathrm{2}{n}+\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{2}\right)^{\mathrm{3}} }\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\phi\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{2}\right)^{\mathrm{3}} } \\ $$$$\phi\:=\:\frac{\mathrm{1}}{\mathrm{8}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\phi\:=\:\frac{\mathrm{1}}{\mathrm{8}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{3}} } \\ $$$$\phi\:=\:\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{8}} \\ $$ | ||
Commented by mnjuly1970 last updated on 16/Dec/20 | ||
$${thanks}\:{alot}\:{sir}\:{olaf}... \\ $$ | ||
Answered by Lordose last updated on 16/Dec/20 | ||
$$ \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}\left(\mathrm{x}\right)\mathrm{ln}\left(\sqrt{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)}\right)\mathrm{ln}\left(\mathrm{cos}\left(\mathrm{x}\right)\right)}{\mathrm{cos}\left(\mathrm{x}\right)}\mathrm{dx}\:\overset{\mathrm{u}\:=\:\mathrm{cos}\left(\mathrm{x}\right)} {=}\int_{\mathrm{1}} ^{\:\mathrm{0}} \frac{−\mathrm{ln}\left(\sqrt{\mathrm{1}−\mathrm{u}^{\mathrm{2}} }\right)\mathrm{ln}\left(\mathrm{u}\right)}{\mathrm{u}}\mathrm{du} \\ $$$$\Omega\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{u}^{\mathrm{2}} \right)\mathrm{ln}\left(\mathrm{u}\right)}{\mathrm{u}}\mathrm{du}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{−\mathrm{ln}\left(\mathrm{u}\right)\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{u}^{\mathrm{2n}} }{\mathrm{n}}}{\mathrm{u}}\mathrm{du} \\ $$$$\Omega\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{u}^{\mathrm{2n}−\mathrm{1}} \mathrm{ln}\left(\mathrm{u}\right)\mathrm{du}\:=−\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}}\mid\frac{\mathrm{u}^{\mathrm{2n}} \left(\mathrm{2nlnu}−\mathrm{1}\right)}{\mathrm{4n}^{\mathrm{2}} }\mid_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\Omega\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}}\centerdot−\frac{\mathrm{1}}{\mathrm{4n}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{8}}\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{3}} }\:=\:\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{8}} \\ $$ | ||
Commented by mnjuly1970 last updated on 16/Dec/20 | ||
$${excellent}\:{sir}\:{lordose}... \\ $$ | ||