Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 136626 by mnjuly1970 last updated on 24/Mar/21

               ..........nice    calculus.........      suppose that:::            ϕ(p)=∫_0 ^( ∞) ((ln(1+x))/((p+x)^2 )) ...✓            find the value of::         ∫^( 1) _0  ((ϕ(p))/(1+p))dp=?...

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:..........{nice}\:\:\:\:{calculus}......... \\ $$$$\:\:\:\:{suppose}\:{that}::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\varphi\left({p}\right)=\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left(\mathrm{1}+{x}\right)}{\left({p}+{x}\right)^{\mathrm{2}} }\:...\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:{find}\:{the}\:{value}\:{of}:: \\ $$$$\:\:\:\:\:\:\:\underset{\mathrm{0}} {\int}^{\:\mathrm{1}} \:\frac{\varphi\left({p}\right)}{\mathrm{1}+{p}}{dp}=?... \\ $$$$\:\:\:\:\:\: \\ $$

Answered by mindispower last updated on 24/Mar/21

ϕ(p)=∫_0 ^∞ (dx/((p+x)(1+x))) =(1/(p−1))[ln(((1+x)/(p+x)))]_0 ^∞   =((ln(p))/(p−1))  ∫_0 ^1 ((−ln(p))/((1−p^2 )))dp=−∫_0 ^1 Σ_(n≥0) p^(2n) ln(p)dp  =Σ(1/((2n+1)^2 ))=(3/4)𝛇(2)=(π^2 /8)

$$\varphi\left({p}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\left({p}+{x}\right)\left(\mathrm{1}+{x}\right)}\:=\frac{\mathrm{1}}{{p}−\mathrm{1}}\left[{ln}\left(\frac{\mathrm{1}+{x}}{{p}+{x}}\right)\right]_{\mathrm{0}} ^{\infty} \\ $$$$=\frac{{ln}\left({p}\right)}{{p}−\mathrm{1}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{−{ln}\left({p}\right)}{\left(\mathrm{1}−{p}^{\mathrm{2}} \right)}{dp}=−\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}\geqslant\mathrm{0}} {\sum}{p}^{\mathrm{2}{n}} {ln}\left({p}\right){dp} \\ $$$$=\Sigma\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\mathrm{3}}{\mathrm{4}}\boldsymbol{\zeta}\left(\mathrm{2}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 24/Mar/21

  tashakor .grateful..sir power..

$$\:\:{tashakor}\:.{grateful}..{sir}\:{power}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com